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Introduction

◮ Objective:
◮ Build a model to forecast a categorical change in wind power (increase, no
change, decrease) one hour ahead with an associated measure of
uncertainty.

◮ Background:
◮ Balancing authorities must maintain

◮ equilibrium within a given region (i.e., supply must equal demand)
◮ stability such that the system is flexible enough to cover the power shortages or excesses
due to unexpected events

◮ Low forecast uncertainty ⇒ fewer rolling reserves and lower wind integration costs
◮ High forecast uncertainty ⇒ greater rolling reserves and higher wind integration costs
◮ No one single type of wind forecast, whether it be of mean wind speed or
mean wind power for the upcoming hour or two, is likely to be sufficient.

◮ Application:
◮ To answer the following operator question, “Will wind generated power stay the
same for the next hour, or will changes in wind power require reallocating
the generation mix?”

◮ If wind power for a particular wind project will stay the same in the next hour with high
probability, then the operator can quickly turn his attention to other decisions.

◮ Prior Markov Chain Work in Wind:
◮ They have been popular for simulating long time series of wind speeds for synthetic system
experiments.

◮ They have been used to switch between regimes for wind power forecasting.
◮ No one, to our knowledge, has used Markov models directly for wind forecasting, and no
one has attempted to forecast changes in wind power.

Data

◮ Ten-minute observations collected over 2 years (2005 and 2006) at 4 met towers.

◮ Hourly averages of speed and directions are computed.

◮ A small amount of data was imputed, less than 2% for most variables/locations.

◮ The type of turbine originally installed at the Stateline Wind Project was Vestas V47-660, a
660 kW turbine whose hub height is 50 m above ground level.

◮ Wind speed is scaled to 50 meters agl using the power law.

Meteorological Tower Locations
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Site Information of the Meteorological Towers

Anemometer
Tower Latitude Longitude Elevation Height
Vansycle, OR 45◦57′ N 118◦41′ W 543 m 31 m
Kennewick, WA 46◦06′ N 119◦08′ W 671 m 26 m
Goodnoe Hills, WA 45◦48′ N 120◦34′ W 774 m 59 m
Sevenmile Hill, OR 45◦39′ N 121◦16′ W 573 m 30 m
See http://me.oregonstate.edu/ERRL/bpa info.html for more information.

Derived Variables

1. Quantitative Power: We convert speed to power assuming a deterministic transformation
and denote this variable by, for example, Vp,t.

2. Categorical Power Change: Quantitative wind power is converted to a change in wind
power, Vpc,t , with with decreases coded a −1, no changes coded a 0, and increases coded a
1, as follows:

Vpc,t =







−1, Vp,t − Vp,t−1 < −δ1,
0, −δ ≤ Vp,t − Vp,t−1 ≤ δ1,
1, Vp,t − Vp,t−1 > δ1,

(1)

where δ1 > 0 is some small change in wind power that would not impact the system
significantly.

3. Current State of Power: The power output variable, Vpo,t, denotes the current state of
the power output:

Vpo,t =







−1, Vp,t ≤ δ2 kW,
0, δ2 kW < Vp,t < 660− δ2 kW,
1, Vp,t ≥ 660− δ2 kW,

(2)

where δ2 > 0 is a small value of power, selected to ensure that this variable represents powers
that are either very close to the maximum or very close to the minimum.

4. Recent 20-min Power Trend: The twenty minute trend variable, V20,t, denotes whether
a decrease, an increase, or no clear trend has occurred over the past 20 minutes.

V20,t =







−1, (Vpc,50,t−1,Vpc,0,t) = (−1,−1),
0, (Vpc,50,t−1,Vpc,0,t) ∈ {(−1, 0), (0,−1), (−1, 1), (1,−1), (1, 0), (0, 1), (0, 0)},
1, (Vpc,50,t−1,Vpc,0,t) = (1, 1).

(3)
Summary of Variables Used in Models

Variable/Location Vansycle Kennewick Goodnoe Hills Sevenmile Hill
Wind Speed Vs,t Ks,t Gs,t Ss,t
Wind Direction Vd ,t Kd ,t Gd ,t Sd ,t
Sine of Direction Vsin,t Ksin,t Gsin,t Ssin,t
Cosine of Direction Vcos,t Kcos,t Gcos,t Scos,t
Power Vp,t Kp,t Gp,t Sp,t
Power Change Vpc,t Kpc,t Gpc,t Spc,t
Current Power Vpo,t — — —
20-min Trend V20,t — — —

Benchmark Models
We desire to forecast the following probabilities at Vansycle:

◮ decrease— π−1,t+1 = P(Vpc,t+1 = −1)

◮ no change—π0,t+1 = P(Vpc,t+1 = 0)

◮ increase—π1,t+1 = P(Vpc,t+1 = 1)

The forecast, V̂pc,t+1, is the event corresponding to the maximum of the set
{π̂−1,t+1, π̂0,t+1, π̂1,t+1}.
Persistence (PER): V̂pc,t+1 = Vpc,t , the observed change in power between the prior and
current hours.
Trigonometric Direction Diurnal (TDD): Hering and Genton (2010) model used for
short-term wind speed forecasts is adjusted to make one hour ahead forecasts at Vansycle.

TDD Predictive Distribution

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

Zone 1: Zone 2: Zone 3: Zone 4:
No Power Power between 0 and 660 kW Maximum Power No Power

TDD Truncated Normal Predictive Distribution

Wind Speed (m/s)

D
e

n
si

ty

◮ The areas under the curve corresponding to
a decrease, no change, or an increase for a
given power curve are used to estimate the
probabilities.

◮ This approach can be used for any
forecasting model that produces a full
predictive distribution and for any type of
power curve.

Markov Chain Models

◮ One-Step MC Model: Assume that the response, Vpc,t+1, is random with
discrete states S = {−1, 0, 1}.

◮ For a given sequence of time points, 1 ≤ 2 ≤ · · · ≤ t + 1, the process should possess the
following Markov property:

P [Vpc,t+1 = j |X1 = i1, . . . ,Xt−1 = it−1,Xt = it] = P [Vpc,t+1 = j |Xt = it],

where j , i1, . . . , it ∈ S , and the conditioning variable, Xt, could be any one of Vpc,t, Vpo,t, or
V20,t.

◮ The transition probabilities at time t can be organized in a transition matrix whose rows sum
to 1 as

P1
t =





π−1,−1 π−1,0 π−1,1

π0,−1 π0,0 π0,1
π1,−1 π1,0 π1,1





◮ Estimated transition probabilities are obtained by summing the frequencies of changes from
state i to state j as follows:

π̂ij =

∑n−1
t=1 I (Vpc,t+1 = j |Xt = i)

∑n−1
t=1 I (Xt = i)

,

for i , j ∈ S , and where I (·) is an indicator function.

◮ Rolling windows of 180 days prior to the target forecast are used to estimate the transition
matrices to account for seasonalities.

Proportion of Changes Observed in Training Data
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◮ Multi-Step MC Models: The response states, Sr = {−1, 0, 1}, remain unchanged, but
the the set of explanatory states, Se, increases.
◮ 2 Step Model = 9× 3 transition matrix
◮ 3 Step Model = 27× 3 transition matrix
◮ 4 Step Model = 81× 3 transition matrix
◮ 5 Step Model = 243× 3 transition matrix

◮ Variables are selected with Vpc,t always in the model since Vpc,t+1 is the response. Later time
lags may enter the model only if the prior time lags at that location are present.
The locations of interest are Vansycle, Kennewick, Goodnoe Hills, and Sevenmile Hill at time
lags of t, t − 1, and t − 2.

Model Comparison

◮ For the MC1, MC2, and MC3 models, the addition of both Vpo,t and V20,t to the locations
alone increases accuracy by ∼ 13%.

◮ The one, two, and three location MC models with the additional two variables perform very
similarly. Thus, using the power change variable at one location alone is sufficient.

◮ The MC1+PO,20 model is 13.42% better than PER, which corresponds to over 1,000
forecasts and nearly 50 days.

◮ The MC1+PO,20 model is 4.25% better than the TDD model, and this is roughly equivalent
to 372 forecasts, or 15.5 days, over the course of a year.

Overall Model Accuracy

Model Overall Accuracy
PER 63.96%
TDD 73.13%
(1) MC1 63.96%
(4) MC1+PO,20 77.38%
(7) MC2(K ) 64.19%

(19) MC2(K )+PO,20 77.50%
(26) MC3(G ,K ) 63.88%
(56) MC3(G ,K )+PO,20 76.98%

(27) MC3(G ,S) 64.13%
(57) MC3(G ,S)+PO,20 77.03%

◮ The majority of errors occur when a decrease occurs but an increase is forecast or vice versa.

◮ MC2 model that includes Kpc,t (19) has some of the lowest frequencies of forecasting an
increase when a decrease occurs, indicating that this next closest location to Vansycle is
provides some relevant information.

◮ If the MC models are used specifically to forecast a “no change,”
◮ For MC1+PO,20, in only 5.37% (1.50% plus 3.87%) of cases is a no change forecast and then an increase or
decrease actually occurs.

◮ Increases or decreases are forecast in only 0.38% (0.13% plus 0.25%) of the hours when a no change occurs.
◮ The total chance of misclassifying a no change with this model occurs in only 5.75% of all forecasts.

Types of Errors in Model Forecasts

True Change: Vpc,t+1

V̂pc,t+1 Model Decrease No Change Increase

Decrease

PER 18.57% 3.92% 11.42%
TDD 22.50% 0.51% 10.47%
(1) MC1 18.57% 3.92% 11.42%
(4) MC1+PO,20 23.07% 0.13% 7.53%

(7) MC2(K ) 24.32% 4.26% 16.94%
(19) MC2(K )+PO,20 25.30% 0.14% 9.70%
(26) MC3(G ,K ) 22.08% 4.04% 15.02%

(56) MC3(G ,K )+PO,20 24.61% 0.30% 9.18%
(27) MC3(G ,S) 22.13% 4.03% 14.82%

(57) MC3(G ,S)+PO,20 23.66% 0.33% 8.28%

No Change

PER 1.51% 29.58% 3.89%
TDD 1.37% 33.52% 3.54%
(1) MC1 1.51% 29.58% 3.89%
(4) MC1+PO,20 1.50% 34.60% 3.87%
(7) MC2(K ) 1.51% 29.58% 3.89%
(19) MC2(K )+PO,20 1.53% 34.63% 3.85%

(26) MC3(G ,K ) 1.53% 29.60% 3.89%
(56) MC3(G ,K )+PO,20 1.50% 34.34% 3.92%

(27) MC3(G ,S) 1.60% 29.65% 3.95%
(57) MC3(G ,S)+PO,20 1.53% 34.42% 3.89%

Increase

PER 13.82% 1.48% 15.81%
TDD 10.03% 0.95% 17.11%
(1) MC1 13.82% 1.48% 15.81%
(4) MC1+PO,20 9.34% 0.25% 19.71%
(7) MC2(K ) 8.08% 1.14% 10.29%

(19) MC2(K )+PO,20 7.08% 0.21% 17.57%
(26) MC3(G ,K ) 10.30% 1.34% 12.20%

(56) MC3(G ,K )+PO,20 7.80% 0.34% 18.03%
(27) MC3(G ,S) 10.17% 1.30% 12.35%
(57) MC3(G ,S)+PO,20 8.71% 0.23% 18.95%

Multinomial Confidence Intervals
Compare the following two sets of forecasts:

π̂−1 = 0.45, π̂0 = 0.03, and π̂1 = 0.52

π̂−1 = 0.12, π̂0 = 0.07, and π̂1 = 0.81.

The second set indicates that the probability of an increase is more likely, but we also need to
quantify the uncertainty in this estimate.

Fitzpatrick and Scott (1987) proposed a set of simultaneous multinomial confidence intervals.
The 100(1− α)% simultaneous confidence interval for πi is

ni

n
± zα/4

2
√
n
,

where zα/4 is the upper quantile from a standard normal distribution.

Forecasts with Simultaneous Confidence Intervals
Transition Probabilities, Forecasts, and Confidence Intervals 
for December 25, 2006, Hour 14 to December 26, 2006, Hour 1
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◮ For the MC1+PO,20 model, in 129 hours, the forecast was incorrect, but the forecast
category had a confidence interval for its probability that overlapped with the confidence
interval for the observed outcome’s category.
This gives a total of 78.86% of hours in which the observed change in power was contained
within the confidence intervals.

Profile and Power Curve Effects

◮ Adding noise to the wind power is expected to have some effect on the accuracies of
the MC models, so the accuracy of the MC1+PO,20 model when applied to wind powers with
different levels of contamination and for different choices of vertical profile is investigated.

◮ We use the Pinson et al. (2008) method for generating noise in a power curve.

Levels of Noise in Power Curve

0 5 10 15 20 25 30

0
10

0
20

0
30

0
40

0
50

0
60

0

Theoretical Power Curve

Wind Speed in m/s

P
ow

er
 O

ut
pu

t i
n 

kW

0 5 10 15 20 25

0
10

0
20

0
30

0
40

0
50

0
60

0

Simulated Low Noise Power Curve

Wind Speed in m/s

P
ow

er
 O

ut
pu

t i
n 

kW

0 5 10 15 20 25

0
10

0
20

0
30

0
40

0
50

0
60

0

Simulated Medium Noise Power Curve

Wind Speed in m/s

P
ow

er
 O

ut
pu

t i
n 

kW

0 5 10 15 20 25

0
10

0
20

0
30

0
40

0
50

0
60

0

Simulated High Noise Power Curve

Wind Speed in m/s

P
ow

er
 O

ut
pu

t i
n 

kW

To generate contaminated power data:

1. Scale the 10-minute wind speed observations to 50 m agl using one of six variations of
scaling (2 profile laws)×(3 profile roughness coefficients).

2. Transform these scaled 10-minute wind speeds to power using the theoretical power curve.

3. Contaminate the 10-minute wind powers with low, medium, or high levels of noise.

4. Use the noisy 10-minute power values to create the values for V20,t from Equation (3).

5. Create noisy hourly averages by taking hourly averages of the noisy 10-minute power values.

6. Use the noisy hourly averages to create the values for Vpc,t and Vpo,t from Equations (1)
and (2), respectively, where δ1 = 3.5 and δ2 = 5.

7. Obtain the MC1+PO,20 forecasts, V̂pc,t+1 using Vpc,t , Vpo,t, and V20,t.

8. Compare Vpc,t+1 and V̂pc,t+1 to obtain a percentage accuracy.

9. Repeat steps 3 through 8 100 times for each combination of profile law, roughness
coefficient, and noise level.

Average Accuracies for Varying Levels of Noise and Profile Laws

Power Law Log Law
Noise Model 0.13 0.14 0.15 0.01 0.02 0.03
Low PER 39.13 39.10 39.05 39.55 39.51 39.47

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

MC 65.16 65.18 65.11 65.46 65.40 65.44
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Medium PER 38.61 38.49 38.61 38.99 38.94 38.91
(0.03) (0.03) (0.03) (0.02) (0.02) (0.02)

MC 64.42 64.26 64.51 64.65 64.56 64.51
(0.04) (0.04) (0.04) (0.03) (0.04) (0.04)

High PER 38.09 38.03 38.09 38.41 38.38 38.32
(0.03) (0.02) (0.02) (0.03) (0.02) (0.03)

MC 63.55 63.52 63.60 63.65 63.67 63.57
(0.04) (0.04) (0.03) (0.04) (0.03) (0.04)

◮ The type of vertical scaling and roughness coefficient appear to have very little impact on the
accuracy.

◮ MC1+PO,20 model’s accuracy is reduced between 12% and 14%.

◮ Without noise in the data, the MC1+PO,20 model beats persistence by 13%, but with noise
in the data, the MC1+PO,20 model improves upon persistence by approximately 26%.

Conclusions

◮ The best overall model is the MC1+PO,20 model.

◮ Models built to perform a particular function, such as forecasting wind speed,
do not automatically produce the best forecast for a different type of
response, such as a categorical change in power.

◮ Including the current status of the power output and the most recent trend in
power changes dramatically improve the performance of the models.

◮ Including off-site locations did not significantly improve the forecast accuracy,
perhaps due to the short forecast horizon.
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