

Assimilation of Wind Power Data to Improve Numerical Weather Prediction and Wind Power Prediction

Erstellung innovativer Wetter- und Leistungsprognosemodelle für die Netzintegration wetterabhängiger Energieträger

- Eine Kooperation von Meteorologie und Energiewirtschaft -

Stefan Declair

EWEA Technology Workshop – Wind Power Forecasting Rotterdam, December 3rd 2013

Agenda

1. Data Assimilation

2. Data Situation

3. Impact-Study

Tennet

Deutscher Wetterdienst

Amprion

1. Data Assimilation

2. Data Situation

3. Impact-Study

Deutscher Wetterdienst

Amprion

Tennet

Forecast: Can i cross the street without getting hit?

Information used:

- Observations
- Knowledge about cars, street, etc
- Experience \rightarrow statistics

Forecast errors due to:

теппет

- Observation (estimation) errors
- Model errors (icy street)
- Case does not match statistics

Pamprion

Deutscher Wetterdienst

LETKF

- Goal: compute a best-fit initial state for the next model integration step
- Method: Local Ensemble Transform Kalman Filter
 - Local: localizes spatially around observations
 - Ensemble Transform: works in ensemble space
 - Kalman Filter: tracks means and covariances

Cost function to minimize

$$J(x) = X^{b}P^{b^{-1}}X^{b^{T}} + [y^{o} - H(x)]^{T}\underline{R}^{-1}[y^{o} - H(x)]$$
minimize in \tilde{S}
 $\overline{w}^{a} = \tilde{P}^{a}Y^{b^{T}}R^{-1}(y^{o} - \overline{y}^{b}) = K(y^{o} - \overline{y}^{b})$
 $\tilde{P}^{a} = [(k-1)I + Y^{b^{T}}R^{-1}Y^{b}]^{-1}$
transform to observation space
 $x^{a(i)} = \overline{x}^{b} + X^{b}w^{a(i)}$
 $P^{a} = X^{b}\tilde{P}^{a}X^{b^{T}}$

renner

KENDA – Kilometer-scale Ensemble Data Assimilation

- Priority program within COSMO consortium
- LETKF for the nonhydrostatic COSMO-DE model of DWD
- Implementation following Hunt et al., 2007
- Basic Idea: perform the analysis in the space of the ensemble pertubations
 - computationally efficient, but also restricted to do corrections to space spanned by the ensemble
 - explicit localization
 - analysis ensemble members are local linear combinations of the first guess ensemble members

Deutscher Wetterdienst Wetter und Kilma aus einer Hand

Forward Operator – Process chain

Deutscher Wetterdienst 🜀 Wetter und Klima aus einer Hand

теппет

IWES

Forward Operator – Powercurve Fit

Deutscher Wetterdienst

Amprion

Forward Operator - Example

Input

- Wind speed/direction from COSMO-DE Analysis
- Power observations

Cost function

Depending on orthogonal distance between data points and objective function

Results

Wind direction sector 190°-250°

> RMSE=10.1%

Deutscher Wetterdienst

50hertz

Agenda

1. Data Assimilation

2. Data Situation

3. Impact-Study

Deutscher Wetterdienst

Data - Haves

- 68 wind farms, node-sharp
- 15min resolution/10min delay
- Average hub heights, farm point of mass
- Installed farm nominal power

rennet

IWES

Data - Comparison

- Wind observations \geq
 - University of Hamburg
 - Height 50+110m
 - Available from 2005/01/01
 - 10min temporal resolution
- Power observations
 - Reference wind farm
 - Average hub height 67m
 - Available from 2012/01/01
 - 15min temporal resolution

Wind power observation coverage Dote: 2013/07/07 Time: 00 UTC

Deutscher Wetterdienst 🜀 etter und Klima aus einer Hand

теппет

Deutscher Wetterdienst

теппет

DW/D

Data - Comparison

IWES

Data - Wants

Additional information needed...

- Average hub distance
- Average blade radius
- Hub alignment
- Information content outside of partial power
- Hub activity
- Losses between farm (hubs) and nodes

...because all the uncertainties enter the LETKF via the observation error covariance matrix

Deutscher Wetterdienst

19

Agenda

1. Data Assimilation

2. Data Situation

3. Impact-Study

Pamprion

OSSE – Observation System Simulation Experiment

- ➢ Goal: Test the impact of newly available observations in the data assimilation
- Method: assimilate artificial observations in slightly perturbed truth
- Advantages:
 - Truth is known exactly
 - All generated fields can be used as observations
 - > Observation system can be altered easily
 - Observation errors
 - Observation densities
 - Temporal resolution/delay

Deutscher Wetterdienst

OSSE – Observation System Simulation Experiment

Current state

Conclusion

Data assimilation

- KENDA: LETKF data assimilation scheme in COSMO-DE
- Forward operator: lookup table approach in progress
- Data situation \geq
 - Available data are of good quality
 - More detailed information necessary to reduce uncertainty for LETKF
- OSSE \geq
 - Determine the impact of a new observation system
 - Work in progress

Thank you for your attention!

୍

Amprion