

Improvement of wind forecasts through limited area modelling

Clive Wilson, Manager Mesoscale Model Development, Met Office

EWEA Wind Power Forecasting Workshop, 2-3 December 2013, Rotterdam

This presentation covers the following areas

- Numerical weather prediction
- Benefits of limited area (mesoscale) modelling
 - Wind resources cf global & reanalyses
 - forecasts
- Finer-scale models (~100m)
- Prospective improved finer-scale reanalyses
- Wind Power forecasts

Step: 24 RMSEF 850 hPa ff/n.hem/observations WMO Lead Centre for Deterministic Forecast Verification (WMO-LCDNV)

© Crown copyright Met Office

Operational Limited area models

Met Office

NAE – 12km Euro4 -4km UKV – 1.5km

Added benefit LAMs over global — 1 year verification 10m winds

Surface (10m) Wind Speed (m/s), Root Mean Square Error (Forecast - Observations), Combined stations, 20121101 to 20131031, Surface Obs

Global -25km

NAE -12km

Euro4 -4km

Reanalyses + global data

Met Office

Data	Resolution	Resolution & Levels used	nominal heights / m	Temporal frequency
ERA-Interim	TL255 (~80km)x 60 levels	0.5° x 0.5° Lowest 6 hybrid	10,30,60,100 ,160,240	3 hourly
MERRA	2/3° x ½° x 72 levels	2/3° x ½° Lowest 2 sigma	60,180	6 hourly
MERRA 10_50	2/3º x ½º x 72 levels	2/3º x ½º 10,50m diagnostic	10,50	hourly
NCEPNCAR (R1)	T62 x 28 levels	2.5° x 2.5° Lowest 3 sigma	40,150,300	6 hourly
CFSR	T382x 64 levels	0.5° x 0.5° 10m, level1, sigma=0.995, p=975,950 hPa	10,20,40,200,400	hourly
EC operational deterministic	TL511 (55km)x 60 levels T799 /91 levels	0.5° x 0.5° As ERA Interim to 01/02/2006 then lowest 7 of 91 levels	10,30,60,90, 140,200,260m	3 hourly
EURO4M – [©] Met Office	12km x 70 levels	12km, lowest 5 levels	10,35,75,130,200	6 hourly

Direct use of reanalyses

Interpolate to observed wind locations

- Bi-linear horizontal
- Vertical logarithmic in height
- Verify with meteorological mast data
 - all at elevated heights >20m
- 185 sets of observations at 80 sites
 - 2001 to 2012

Complexity	Offshore	Near- shore	Orographic		
			Low	Medium	High
# sites	11	5	16	24	24
# sites x levels	21	10	38	68	47

© Crown copyright Met Office

Quality of direct use of reanalyses Speed bias -mean and standard deviation

Added benefit of mesoscale models + "Virtual Met Mast"

Virtual Met Mast

Use archived and rerun Met Office mesoscale *weather* forecast models

Downscaled reanalyses – ERA Interim

Local downscaling adjustments around site

- Extension to long term climatology (32y 1979-2012)
- Local wind maps
- Verification and uncertainty estimates
- High resolution modelling to improve adjustment

Incorporation of on-site mast observations (VMM Plus)

Parametrisation of effects of unresolved orography: eg over the COLPEX (<u>Co</u>ld Air <u>P</u>ooling <u>Experiment</u>) region

4 km model orography

Orographic Roughness scheme in NWP models accounts for drag due to unresolved terrain.

Local wind
 predictions need
 to correct for this

Terrain at 100 m resolution

© Crown copyright Met Office

Land adjustments, Howard and Clark(2007) - roughness correction

Height adjustment for local orography -Linear model

Met Office

- Mason & King 'model D'
- 100 m orography
- Tapered at edges of domain (25x25 km²)
- Filtered to remove larger scales represented in mesoscale model
- Run for every wind direction with 5° resolution

© Crown copyright Met Office

1.5km model improvement

Met Office

1.5km model improvement

Met Office

Met Office

Mean stability 50-25m – UK4

Mean speed shear 50-25m UK4

- Use nested suite
- Global(60km) \rightarrow 12km \rightarrow 4km \rightarrow 1km \rightarrow 330m \rightarrow 100m grids
- Short period 1-2 months of re-initialised daily cycles
- Derive statistical relationship between 4km and 1km,330 and 100m simulated winds
- Apply same parameters to rescale VMM downscaled winds

100 m model domain and orography

- Area = 20km x 20km centred on Springhill
- Masts at:-
 - Duffryn (main valley) -
 - 50m
 - Springhill (valley rim)-
 - 30m
 - **B**urfield (adjacent valley)
 - 30m

Time averaged wind speed at 30m above ground level

- Area = 10km x 10km
 centred on Springhill
- Orography contours from 200m (white lines) to 600m (black lines).
- Increased detail and larger range of winds in finer resolution simulations.
- Not surprisingly, windier over the hill tops (including Springhill) and calmer in the valleys (including Duffryn).

333M MODEL (small) Speed at mast = 6.98 m/s

Prospects of improved finer

Met Office

- Euro4M project
 - FP7 pilot
 - Regional reanalyses ~12km

scale reanalyses

- UERRA (2014-2018) will build probabilistic reanalysis capability and provide 30-40yr multivariate dataset of essential climate variables (ECVs).
- New EUROPEAN wind atlas
 - Maybe ~ 4km

EURO4M preliminary reanalysis –regional 12km compared to ERA

© Crown copyright Met Office

EURO4M preliminary

Met Office

reanalysis -regional 12km

Operational Wind Production Forecast

Met Office

Parameters:

- Wind speed at hub height
- Kalman filtered wind speed at hub height (where observations are available)
- Gust/Maximum wind speed at hub height
- Minimum wind speed at hub height •
- Wind direction at hub height •
- Pressure at hub height
- Temperature at hub height
- Relative humidity at hub height
- Air density at hub height
- Sensible heat flux
- Lightning risk

Wind Production Forecast (WPF)

Deterministic Probabilistic

- Hourly to T+168h, 6 hourly to T+14 days
- updated 24 times daily
- Observations (WPF+)
 - Kalman filter
 - Basic nowcasts

Models used:

- UKV
- Euro4
- Global
- MOGREPS-UK
- MOGREPS-G
- MOGREPS-15

Methods:

VMM, site specific,blending, lagging, Kalman

- Hourly to T+120h, 6 hourly to T+14 days
- Updated 4 times daily

Ensembles used:

- MOGREPS-UK
- MOGREPS-G
- MOGREPS-15

Deterministic forecasts MAE Met Office – March 2013 single location

Ensemble Prediction System forecasts

Windspeed

©

UK (2km) ensemble improved skill relative to UK 1.5km -10m winds

- Modern reanalyses better than older
 - better resolution, temporal resolution
 - Finer Regional reanalyses ~10% improvement
- Mesoscale added accuracy
 - Closer representation of orography/locality
 - Diurnal better
- Higher resolution to refine mesoscale (correlation/correct)
- Operational forecasts
 - Site +blend+lag+ensembles +Kalman+nowcasts

Questions ?

© Crown copyright Met Office

Long term forecast accuracy improvement surface pressure~1dav/decade

Verification vs Analyses. Area 2. RMS error of PMSL

VMM

VMM best

amplitude

Near shore Off shore Low High:hillside

hilltop valley

High complexity

© Crown copyright Met Office

All