

Energy Forecasting Customers:

Analysing end users' requirements

Dec 3rd, 2013

Carlos Alberto Castaño, PhD Head of R&D carlos.castano@gnarum.com

I. Who we are

II. Customers' Profiles

III. Improving forecasts for trading

IV. Conclusions

I. Who we are

Gnarum

- The name *GNARUM* is derived from the Latin word *gnarum* which means "I knew it".
- GNARUM was born out of Gnera Group's desire to satisfy the IT demands of renewable energy companies operating in the electricity market.

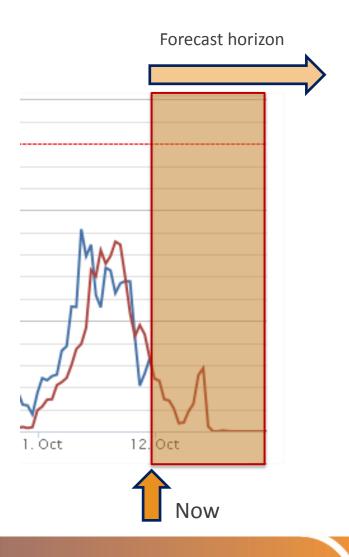
- **GNARUM** is committed to exceptional customer service.
- GNARUM's foundation is formed through Gnera Group's vast experience.
 All the knowledge and know-how possessed by Gnera Group has been used and expanded upon for every project developed by GNARUM.

Gnarum

International Experience

- **Experienced** with multiple renewable technologies
- Solid know-how backed by 10 years of experience operating in electricity markets with a high concentration of renewable technologies.
- More than 400 plants and 1,200 MW currently managed
- More than 2.5 TWh forecasted energy in 2012
- 24x7x365 Monitoring Center

II. Customers' Profiles


Gnarum

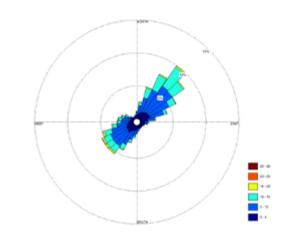
Forecasting Horizon Time Scales:

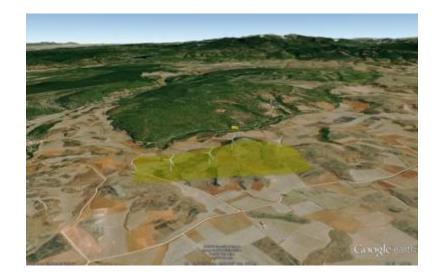
- Nowcasting
 - Seconds to minutes ahead
- Short-term prediction
 - Up to 96-120 hours ahead
- Medium-long term prediction
 - Several days ahead up to 2 weeks

Forecasting Time Resolution:

• 5 min, 15 min, hourly, daily, monthly

7


II. Customers' Profiles


II. Customers' Profiles

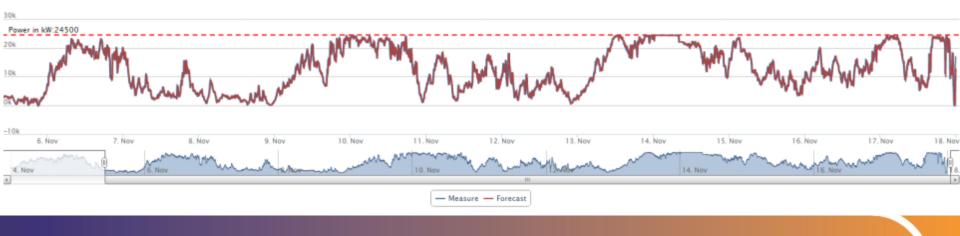
Gnarum

Resource/Generation Analysis Customers:

- Required for decision making
- Long-term simulation
- Monthly/Yearly averages
- On-site Data availability: poor
- Predictability higher
- Statistical characterization
- Error tolerance higher
- High computation time consuming

Applications

- Wind farm siting
- Bilateral contracts evaluation



II. Customers' Profiles

9

O&M Customers:

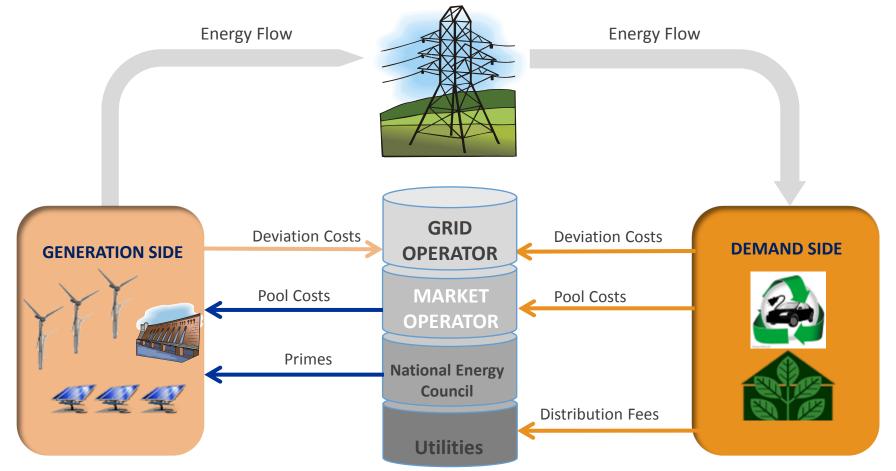
- Short-term operation
- Accuracy is important
- Up to 6-10 hours ahead
- 5 to 10 min time resolution
- Real-Time data availability
- Computation time limited to minutes
- Update cycle: high
- Ramp events forecasts

Market Operations:

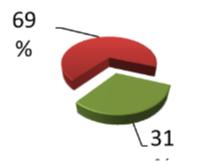
Day-Ahead management

- Revenues and penalties depend on accuracy
- From 6 to 48 hours ahead
- 15-min or Hourly time resolution
- Update cycle: several times/day
- Forecast driven by NWP
- Managing uncertainties

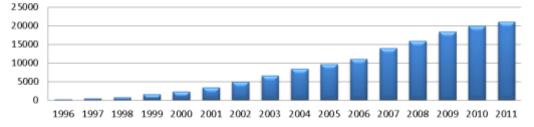
My forecast					
Plant: DEMO03 e Data variable: Energy e Time basis: 1H e Zoom 1h 3h 12h 1d 7d 1m All	SUDAUT				
30k Power in kW 26000					
			www.A		M
-10k 26. Nov 12'00 27. Nov 12'00 28. Nov 12'00 29. Nov 12'00 8. 25. Nov 29. Nov 29. Nov 12'00 8. 25. Nov 29. Nov 29. Nov	30. Nov 12'00 1. Dec 12'00 30. Nov 1. Dec	2. Dec 12:00 3. Dec 12:00 2. Dec 3. Dec		Dec 12'00 6. Dec 12'00 5. Dec 6. Dec	1
— De	elivered E kWh Delivered without GAP & Av	albty. E kWh — Forecast E kWh			



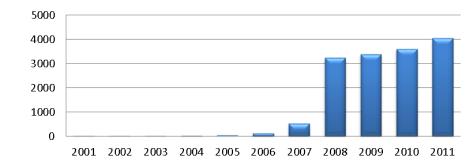
12

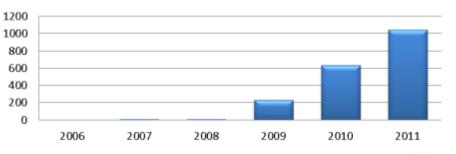

Spanish FIT System

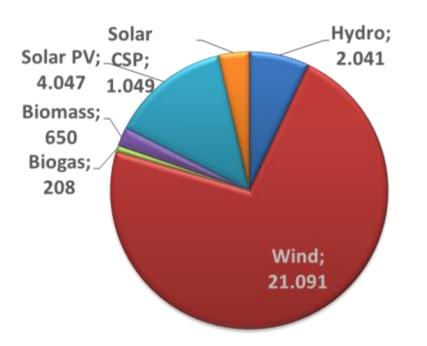
GRID OPERATOR AND UTILITIES



Gnarum


III. Improving forecasts for trading


Evolution of Wind Installed Capacity (MW)



Evolution of Solar PV Installed Capacity

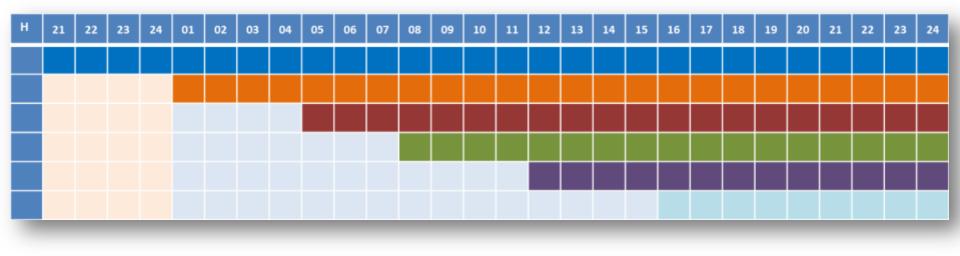
Evolution of CSP Installed Capacity

14

Day ahead Market:

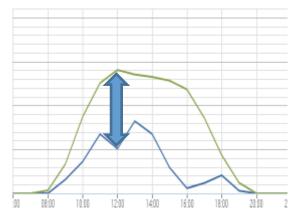
Daily session with forecasted energy for the next day.

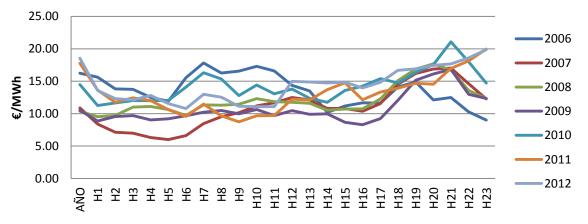
н	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24


ENERGY GENERATION CONTEXT IN SPAIN. Market

15

Intra-day Market:


Several sessions a day to adjust the energy sales

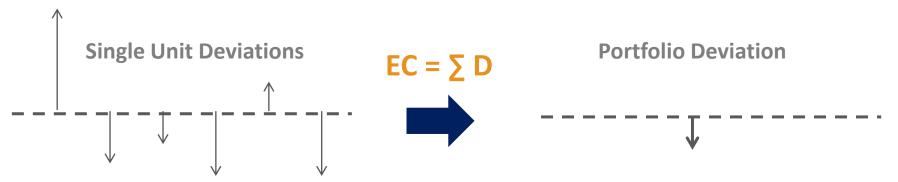


Imbalancing penalties

Hourly Averaged Price

Costs = P x D P = Imbalancing price D = Deviation

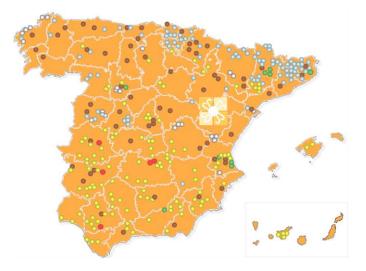
Average cost 15 €/MWh


Imbalancing penalties are directly proportional to the inaccuracy or deviation.

17

Reduction of Imbalancing Penalties

• The **Portfolio Effect (EC)** is the result of damping. It is the net deviation of a set of renewable plants.



Cost Asymmetry only penalizes deviations in one direction, relative to the needs of the electric system.

•		System Need	Deviation	Cost
	1	^	^	0
	2	^	↓	Full Cost
	3	↓	^	Full Cost
	4	↓	+	0

April to September 2012:

	Nameplate Capacity	Costs w/o Forecasting	Costs w/ Forecasting & Portfolio	Costs Managing Uncertainties	Savings
Wind	140 MW	0.86 M€	0.26 M€	0.20 M€	0.66 M€
PV	513 MW	4.05 M€	0.48 M€	0.40 M€	3.65 M€
Hydro	125 MW	0.6 M€	0.05 M€	0.04 M€	0.56 M€
TOTAL	778 MW	5.51 M€	0.79 M€	0.64 M€	4.87 M€

IV. Conclusions

21

• Forecasting is a valuable source of information

- Different applications and problems
- Different strategies to compute the forecast
- Different customers for each solution
- Forecasts adapted to your problem
 - Extra information can be used to improve the forecasts
 - IT systems are helpful
- Managing uncertainties, interesting profit for trading

Than k you!

www.gnarum.com carlos.castano@gnarum.com

