

Driveline and Chassis Technology

Design of wind turbine gearboxes with respect to noise

Joris Peeters / Jan Houben Wind Power Technology

Agenda

1. **ZF Wind Power**

- 2. Mechanical noise of wind turbines
- 3. Gearbox design for low noise and vibrations
- 4. Research project ALARM
- 5. Conclusions

Combination of ZF and Hansen

	Æ	Hansen® TRANSMISSIONS	+ COHANSEN®
Customers	Vestas.	Vestas SUZLON Gamesa Image: Gamesa Image: Gamesa SIEMENS SINOVEL Image: Mage: Gamesa	Vestas SUZLON Gamesa
Products	2 MW	کی کے ایک کی ایک کی ایک کی ک	Se 4
Regions			
Production Locations	Gainesville, USA	Lommel, Belgium Coimbatore, India	Gainesville, USA Coimbatore, India
	1		Ismission Annual Report 2011, 31.03.11 and Annual Report 2010, 31.03.10

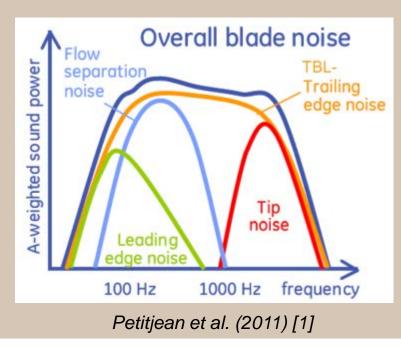
Design of wind turbine gearboxes with respect to noise

The Business Unit Wind Power Technology is part of the Industrial Technology Division of ZF

ZF Friedrichshafen AG Shareholders: 93.8 % Zeppelin Foundation and 6.2 % Dr. Jürgen and Irmgard Ulderup Foundation

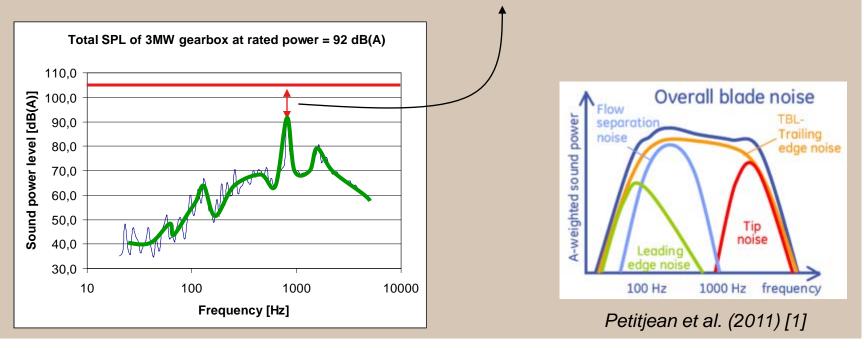
	Division	Division	Division	Division	Joint Venture
CEO, Market	Powertrain Technology	Chassis Technology	Commercial Vehicle Technology	Industrial Technology	Steering Systems 50 %
	Transmissions	Chassis Systems	Truck & Van Driveline Technology	Construction Machinery Systems	Passenger Car Steering Systems
Finance, Controlling, IT, Process Management	Axle Drives Powertrain Modules	Chassis Components Rubber & Plastics	Bus Driveline Technology	Agricultural Machinery Systems	Commercial Vehic Steering Systems
Human Resources		Suspension Technology	CV Axle Systems CV Chassis Modules	Material Handling Systems	Passenger Car Steering Columns Global Aftermarke
Materials Management			CV Damper Technology CV Powertrain	Test Systems Special Driveline Technology	Giobai Allermarke
Operations and Technology			Modules	Electronic Systems Marine Propulsion Systems	
Compliance ¹⁾				Aviation Technology	
Die Casting Technology ²⁾ ZF Services ³⁾				Wind Power Technology	
Board of Management Integration of Hansen Transmissions	Organizational unit Partial activities in wind power	 1) linked to CEO 2) linked to Materials M 3) linked to Market don 	lanagement domain) ZF Lenksysteme GmbH is a ZF Friedrichshafen AG and	joint venture between Robert Bosch GmbH.


Agenda

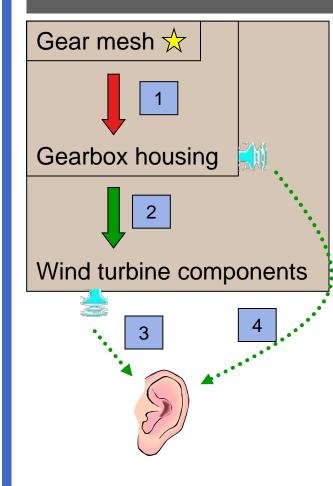

- 1. ZF Wind Power
- 2. Mechanical noise of wind turbines
- 3. Gearbox design for low noise and vibrations
- 4. Research project ALARM
- 5. Conclusions

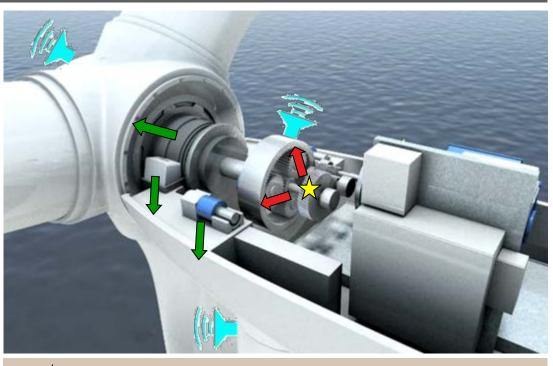
Frequency spectrum of wind turbine noise sources

- 1. <u>Aerodynamic noise</u>
- source = blade motion in air
- primarily broadband e.g. total SPL = 105 dB(A) (turbine at rated wind speed)



Frequency spectrum of wind turbine noise sources

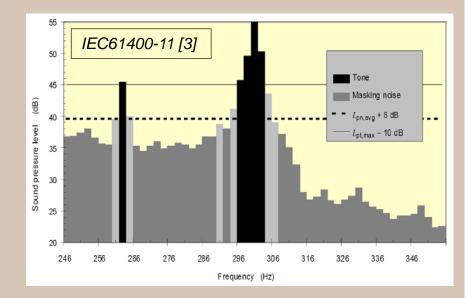

- 2. <u>Mechanical noise</u>
- sources: gearbox, generator, cooling fans, ...
- primarily tonal content, not determining WT overall SPL



11/12/2012

Transfer path of mechanical noise (gearbox as example)

Source: gear mesh, (bearings, pumps)
Structure borne transfer path inside / outside gearbox
Airborne radiation by gearbox / by other components



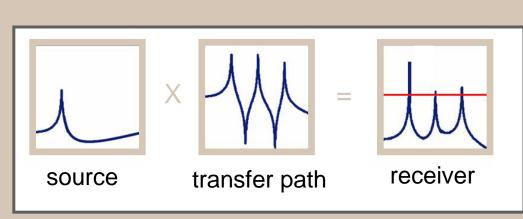
Potential annoyance

Annoyance depends on noise level of other sources (a.o. aerodynamic, background)

1. <u>tonality:</u>

distinguishable tone is audible

2. (overall WT sound power level dominated by mechanical noise)

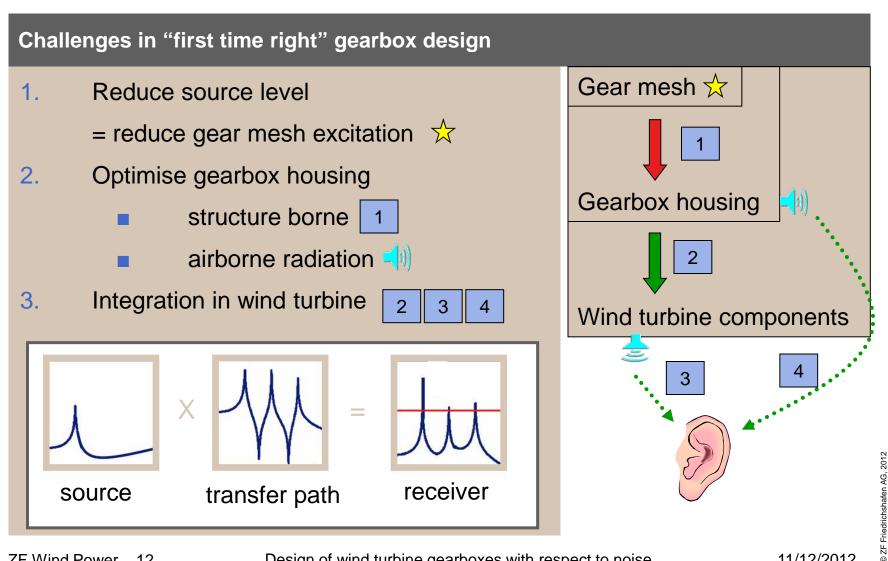

© ZF Friedrichshafen AG, 2012

Design of wind turbine gearboxes with respect to noise

Measures / solutions for annoyance of mechanical noise

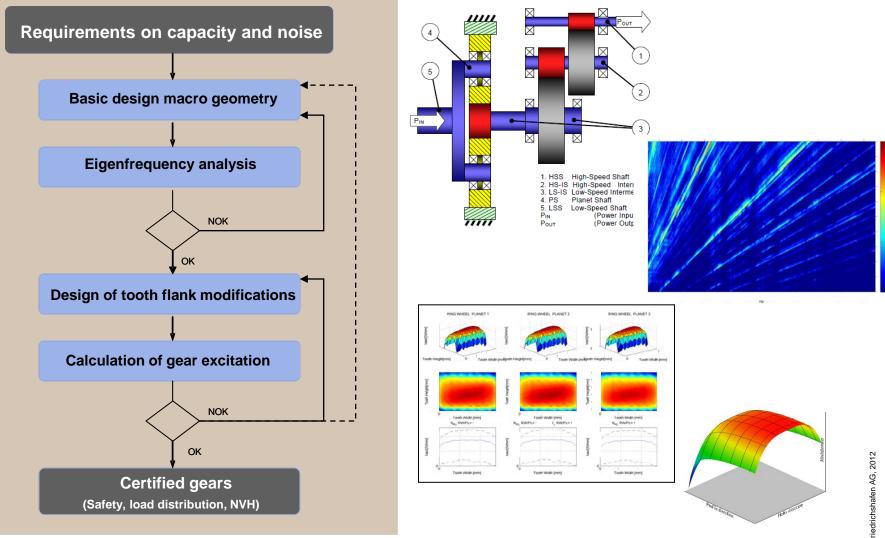
- A. <u>Design "first time right"</u>
- reduce source level
- optimise transfer path (avoid resonance / add damping)

- B. Corrective actions (when needed)
 - shift resonance (e.g. tuned absorber, change speed)
 - add more damping (e.g. nacelle insulation)


Design of wind turbine gearboxes with respect to noise

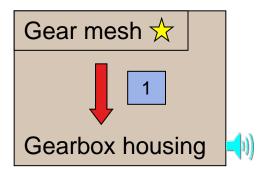
Agenda

- 1. ZF Wind Power
- 2. Mechanical noise of wind turbines
- 3. Gearbox design for low noise and vibrations
- 4. Research project ALARM
- 5. Conclusions



Design of wind turbine gearboxes with respect to noise

1. Excitation reduction through gear optimisation


Design of wind turbine gearboxes with respect to noise

11/12/2012

2. Transfer path optimisation: structure borne and airborne

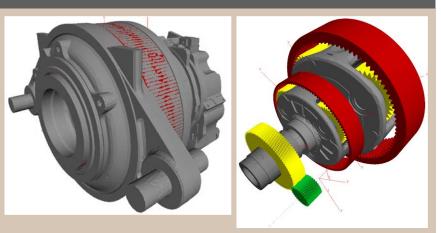
Optimisation by virtual design assessment

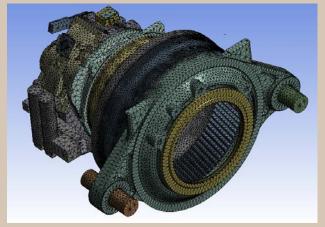
Simulation requirements:

- Gear mesh model
 - Transfer path structural model
 - Radiation
 - structure borne at interfaces
 - airborne at housing

Chosen solution:

Multibody simulation for vibrations

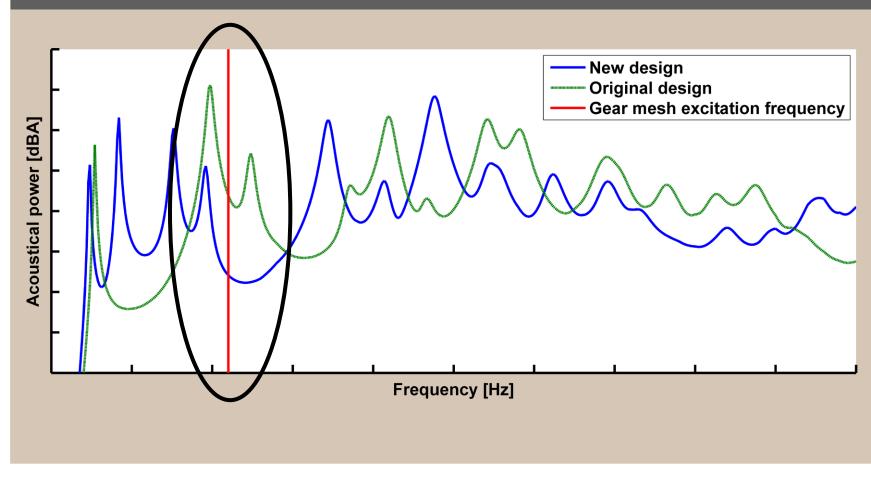

Acoustic FE simulation for airborne radiation



2. Transfer path optimisation: structure borne and airborne

Structural multibody simulation model in SIMPACK

- Gear excitation forces SIMPACK FE-225
- Bearing forces
 - 6x6 stiffness matrix
 - <u>Flexible components</u> via CMS reduction:
 - planet carriers
 - shafts
 - housing: mesh size 5cm,
 1st eigenmode < 100Hz, 1006 DOFs



Design of wind turbine gearboxes with respect to noise

2. Transfer path optimisation: structure borne and airborne

Example of a housing design optimisation to avoid resonance

Agenda

- 1. ZF Wind Power
- 2. Mechanical noise of wind turbines
- 3. Gearbox design for low noise and vibrations
- 4. Research project ALARM
- 5. Conclusions

Research project ALARM

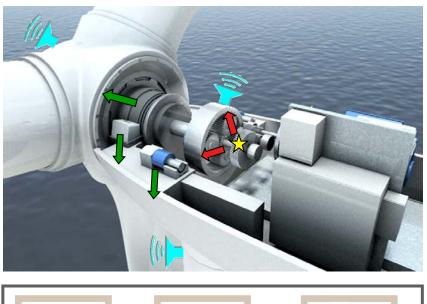
REDOWCI

Novicos

"First time right" wind turbine design requires cooperation between stakeholders

Cooperation between 3 stakeholders in <u>source</u> and <u>transfer path</u>:

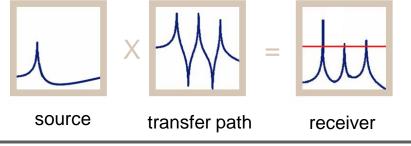
KT


MESM.

REPOWE Systems	WT manufacturer	Hamburg
Æ	WT gearbox manufacturer	Antwerp
MESM-	Bushing manufacturer	Rimbach

+ 2 engineering companies

Novicos	Software / Simulation	Hamburg
	Software & Hardware / Simulation & Test	Leuven


+ 2 universities			
KT mfk	Chair of Eng. Design	Erlangen	
KATHOLIEKE UNIVERSITEIT	Dept. Mechanical Eng.	Leuven	

LEUVEN

(7F)

LMS'

© ZF Friedrichshafen AG, 2012

Rese	arch proje	ect ALARM		
ALARM research activities				
		Simulations & Measurements		
	KT mfk	Data acquisition		
	Æ	Test rig measurements → Gear mesh excitation		
	REPOWCI Systems	WT measurement (a.o. TPA) \rightarrow structure and airborne radiation		
	Mesm-	Measurements: WT, high freq shaker → uncoupling structure borne transfer		
	Novicos	Simulation WT \rightarrow structure and airborne radiation		
		Simulation test rig → Gear mesh excitation		
		Measurements test rig, WT → Gear modelling, TPA		

Design of wind turbine gearboxes with respect to noise

© ZF Friedrichshafen AG, 2012

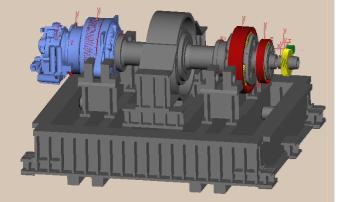
KT

ovicos

XLMS'

Research project ALARM

Repower 3.2M114 wind turbine


<u>Status</u>

ZF gearbox

- gearbox simulation models ready
- 1st proto gearbox test rig measurements done

ESM

- gearbox assembly in wind turbine planned

Outlook (planned for 2013)

- additional test rig measurements
- elaborate field measurement campaign
- correlation of simulations with experimental results

Agenda

- 1. ZF Wind Power
- 2. Mechanical noise of wind turbines
- 3. Gearbox design for low noise and vibrations
- 4. Research project ALARM
- 5. Conclusions

Conclusions

1. Mechanical noise of wind turbines

- \Rightarrow lower in overall sound power level compared to aerodynamic noise
- \Rightarrow typically tonal and mainly structure borne noise
- \Rightarrow avoid annoyance (= tonality) by reducing source level and optimising transfer path

2. Gearbox design for low noise and vibrations

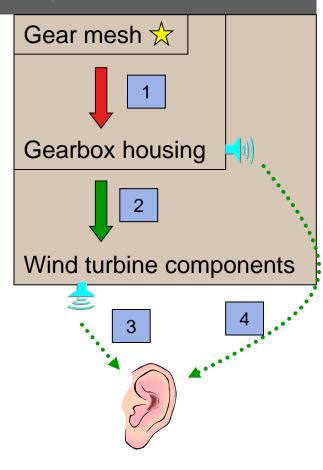
- \Rightarrow excitation reduction by optimising macro and microgeometry
- \Rightarrow transfer path optimisation by using MBS and acoustic FE to predict the response
- \Rightarrow additional analysis at wind turbine level enhances optimisation potential at gearbox level

3. Research project ALARM

- \Rightarrow 7 industrial partners cooperating on 'expert design system' to avoid tonality issues in the field
- \Rightarrow focus on Repower 3.2M114 wind turbine development:
 - \Rightarrow simulation of noise sources, transfer paths and radiation
 - $\Rightarrow\,$ experimental analyses on test rigs and in the field to build up know how and verify models

Thank you very much for your attention!

Suggestion for an efficient measurement strategy for WT gearboxes


1. Wind turbine should comply with (local) acoustic regulations

Measurements in prototype phase

Correlation between test rig and in-the-field

2. Gearbox should meet general <u>quality</u> <u>requirements</u>

Test rig measurements in serial production Identify quality deviations

[1] Dr. Benoit Petitjean, Dr. Roger Drobietz, Dr. Kevin Kinzie, **Wind Turbine Blade Noise Mitigation Technologies,** in *Fourth International Meeting on Wind Turbine Noise,Rome Italy 12-14 April 2011*

[2] Rakesh C. Ramachandran, Hirenkumar Patel and Ganesh Raman, Localization of wind turbine noise sources using a compact microphone array with advanced beamforming algorithms, in Berlin Beamforming Conference 2012

[3] IEC61400-11 Ed.3: Wind turbines - Part 11: Acoustic noise measurement techniques

IMPORTANT NOTICE

- The information, statements and opinions contained in this presentation do not constitute or form part of, and should not be construed as, an offer, solicitation or invitation to subscribe for, underwrite or otherwise acquire, any securities of ZF Wind Power Antwerpen NV or any member of its group nor should it or any part of it form the basis of, or be relied on in connection with, any contract to purchase or subscribe for any securities of the Company or any member of its group, nor shall it or any part of it form the basis of or be relied on in connection with any contract or the basis of or be relied on in connection with any part of it form the basis of or be relied on in connection with any contract or commitment whatsoever.
- This presentation and any materials distributed in connection with this presentation may include statements that are "forward-looking statements". In some cases, these forward-looking statements can be identified by the use of forward-looking terminology, including the terms "believes", "estimates", "forecasts", "plans", "prepares", "projects", "anticipates", "expects", "intends", "may", "will", "should" or other similar words. Forward-looking statements may include, without limitation, those regarding the Company's financial position, business strategy, plans and objectives of management for future operations (including development plans and objectives relating to the Company's products) and the wind turbine and gearbox markets. Such forward-looking statements involve known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements expressed or implied by such forward-looking statements. Such forward-looking statements are based on numerous assumptions regarding the Company's present and future business strategies and the environment in which the Company will operate in the future. These forward-looking statements speak only as of the date of this presentation. The Company expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any forward-looking statement contained herein to reflect any change in the Company's expectations with regard thereto or any change in events, conditions or circumstances on which any such statement is based.
- Any information contained in this presentation on the price at which shares or other securities in the Company have been bought or sold in the past, or on the yield on such shares or other securities, should not be relied upon as a guide to future performance.