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Introduction 

Environmental concerns in developing wind farms have been highlighted by 

both the wind-energy community and ecological experts [1–3] as the demand for 

wind power energy grows rapidly around the world to meet public policies for 

renewable energy. One of the primary concerns is the increase in bird mortality 

caused by collision with blades, loss of nesting and feeding grounds, and 

interception on migratory routes [4–7]. Hundreds of annual bird fatalities, 

including those of charismatic species, have been reported at several sites [6]. To 

assess such risks during the establishment and operation of wind farms, 

investigation of bird ecology and assessment of potential risks are necessary.  

Conventional bird monitoring has been carried out by manual observation, 

which is expensive and laborious [8]. Automation in this task can lower the cost, 

enable long-term monitoring, and lead to higher accuracy and reproducibility. 

However, an automatic system is required to perform bird detection as well as 

classification of bird species. 

A few studies about automatic bird monitoring exist. Although radar-based 

detection has been commonplace for birds [9, 10, 11], image-based detection 

using cameras is also a promising approach, owing to recent dramatic advances 

in imaging devices and the computer vision research field. DTBird [12, 13] and 

APEM [8, 14] are frontier enterprises developing image-based bird detection. 

However, very few scientific papers discuss whole pipelines designed for bird 

monitoring. 

In addition, accuracy, precision, and recall of general bird detection algorithms 

remain uncertain. An exception is May et al.’s work reporting that DTBird 

detected 76% to 96% of total birds in an experimental setting in Smøla [13]. With 

state-of-the-art methods in computer vision, bird detection in a general object 

detection competition achieves lower scores compared with detection via persons, 

buses, and bikes [15, 16]. The reasons for such low scores have not yet been 

explored.  

 

Our Approach  
This paper presents an automated bird monitoring system for wind farms 

including a whole image processing pipeline. Our system utilizes recent 

computer vision methods based on machine learning for robust and detection. In 

addition, to clarify the capability of bird detection and classification methods, we 

utilize a wild bird image dataset around a wind farm as a benchmark [17] and 

evaluate the performance of basic machine-learning algorithms.  



 
Figure 1. Overview of proposal system for bird detection. 

 

 

Our system consists of a fixed camera, a laptop computer for control, and 

recognition software. It captures images automatically and processes them to 

detect and classify birds (Fig. 1). The core algorithm is based on machine 

learning for robust detection of birds, and the details are evaluated below. The 

system is able to discriminate birds from others or a species of birds from others 

after the training phase. During training, the classifier is optimized in 

accordance with training images including birds and others.  

For the performance evaluation of basic bird detection and classification, we 

utilize a dataset of birds at a wind farm [17]. This dataset offers open access and 

has the preferable attributes: containing a large amount of data and presenting a 

detailed specification of birds. “Detection task” is defined as a classification of 

birds and non-birds, given the candidate regions suggested from motion 

information. “Classification task” is defined as a classification between hawks 

and crows, which is a fundamental and practical task in a bird-monitoring 

system. They are the most frequent classes of birds in the area and we have 

sufficient amount of data for accurate evaluation. This two-class classification is 

also practical, because many endangered species are included in hawks. 

 

 

Main Body of Abstract 
 

System Overview 

Fig. 1 shows an overview of our system. We use a still camera with a telephoto 

setup to capture a bird with a one-meter wing span 580 meters away that would 

cover an area of 20 pixels in the image, considering the distance between the 

camera’s location and the wind turbine. This setup enables us to monitor a wide 

area suitable for bird investigation, including the wind turbine. The resolution of 

the sensor is 5616 times 3744 pixels and the field of view is 27 times 19 degrees.  

 



 
Figure 2. Structure of dataset [17] and bird image examples. Dataset includes 

time-lapse images, bounding boxes of birds and other flying objects, and their 

class labels. 

 

The interval of image capture is two seconds because of the transfer rate 

between the camera and the laptop. 

 

Our algorithm is a combination of background subtraction [18] and object 

classification. Background subtraction is a method for extracting moving objects 

from fixed backgrounds and works well on scenes that consist of birds and fixed 

backgrounds except for wind turbines. However, regions extracted still include 

some background objects, such as turbine parts, trees, or clouds; thus, we utilize 

machine learning-based classifiers to filter birds from others. Specifically, we use 

AdaBoost [19], a widely used learning algorithm in the computer vision field. 

This algorithm is often combined with image features such as Haar-like [20] or 

Histogram of Orientated Gradients (HOG) [21] for further robustness. The 

performance of these methods is known to depend highly both on the types of 

targets (faces, people, birds, etc.) and scene properties (indoor, street, wind farm, 

etc.). Thus, in this study, we compare some of the methods to clarify what kind of 

methods is suitable for bird monitoring in wind farms. 

 

Wild Bird Image Dataset for Training and Evaluation 

The dataset [17] is a sequence of images of a scene at a wind farm, and it 

provides annotations of bird information appearing in the images (Fig. 2). 

Annotations were added to the images by bird experts who are members of a bird 

association and have experience in field surveying. They checked the image 

timelines, found birds, and annotated bounding boxes with class labels for each 

bird. 32,442 images were processed and 32,973 birds were found. 

 

Evaluation Experiments 

Using this dataset, we conducted two recognition experiments: bird detection 

and two-class species classification. In these experiments, we used Haar-like[20], 

Histogram of Orientated Gradients (HOG) [21] features, or RGB features (image 

pixel values without transformation) combined with AdaBoost [19].  



 
 

Figure 3. Bird image examples grouped by resolutions.  

 

In the experiment of bird detection, we used bird regions in the dataset as 

positive samples. As negative samples, we used background regions clipped by 

background subtraction. To experiment on the dataset efficiently, we conducted 

five-fold cross-validation. 

In the experiment of species classification, we used hawks as positive samples 

and crows as negative samples for the evaluation of species classification. In this 

experiment, we divided the positive and negative images into groups based on 

resolution. Species classification is a difficult task to learn for the algorithms, so 

we experimented on the effect of resolution variation using this task. Hawk and 

crow images are divided into the groups of 15–20 pixels, 21–30 pixels, and 31–50 

pixels (Fig. 3). On each group, we conducted holdout validation using 800 hawks 

and 150 crows for training data and others for test data. 

The results of birds-versus-others classification are shown in Fig. 4. In the 

graph, the x-axis is the false positive rate, the rate of misrecognizing 

backgrounds as birds, and the y-axis is the true positive rate, the rate of 

correctly recognizing birds. These curves in the graph present a trade-off 

between correct detection of birds and misrecognition of others, and the upper 

curves show the better results. The best performance is achieved with Haar-like. 

At the false positive rate of 0.01, over 0.98 of birds are still detected with Haar-

like, which is a successful performance. 

 The results of hawks-versus-crows classification are shown in Fig. 5. This can be 

explained in the same way as Fig. 4, except that the false positive rate is the rate 

of misrecognizing crows as hawks, and the true positive rate is the rate of 

correctly recognizing hawks. Because of visual similarity, species classification is 

much more difficult than birds-versus-others classification, and lower 

performance  is apparent. However, success of classification to some extent is 

also observed with RGB features in the 15–20 pixels group and with HOG in the 

30–50 pixels group. 



 
Figure 4. Results of bird detection (bird-versus-others classification).  

 
Figure 5. Results of hawk-versus-crow species classification. 

 

 

Upper-left curves 

show higher 

performances. 



Conclusion 

We have proposed a bird monitoring system based on time-lapse images and 

conducted experiments for evaluation of the system. In the experiments, we 

showed successful results for bird detection and the possibility of species 

classification using image recognition. However, there is room for performance 

improvement, especially in species classification. Improvement of the software 

for more accurate bird monitoring is necessary. 

 

Learning Objectives 

Image-based detection and classification is a promising approach for bird 

monitoring around wind farms. Readers can understand the whole image 

processing pipeline required for fully automatic bird-monitoring, the 

performance of established computer-vision methods, and an evaluation 

methodology. It also introduces an open image database designed for the wind-

energy community. The proposed system is a hopeful solution to bird strikes and 

can contribute to social acceptance of wind energy. 
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