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Motivation and Approach 

Conventional wind turbines (WT) still have a lot of disadvantages, like large weight and size or poor effi-

ciency and reliability. To reach a higher efficiency at a high power density, as well as reduce downtimes 

and improve maintenance, an alternative 6 MW WT drive train is developed. The proposed drive train has 

six 1 MW generators that rotate at 5000 rpm and thus combines the advantages of WTs with power split 

with the high-speed technology of electrical machines. Different gearbox configurations and generator 

topologies are designed and an operating strategy is developed. 

Gearbox Configurations 

Four gearbox configurations are designed and investigated on a concept level. They are composed of 

four gear stages to realize a ratio of over 1:400 for the high-speed generators. Three planetary gear stages 

(P) and one spur gear stage (S) are used to implement the power split to six generators. The differences 

between the individual concepts is the position of the power split to the six output shafts (see Figure 1). 

After the spur gear stage six switchable clutches are integrated, one for each gear train. The idea is to 

connect and disconnect individual generators and gear trains during partial load to increase the efficiency 

and optimize the capacity of the components. 

 

Figure 1: Gearbox configurations. 

The comparison of the four configurations shows advantages for the SPPP concept, regarding weight and 

modularity (total number of parts to different number of parts) (see Table 1). The high number of identical 

parts with less weight enables a very modular gearbox design. 

Gearbox concept PPPS PPSP PSPP SPPP 

Weight (Gears, shaft, bearings) ≈ 47 t ≈ 49 t ≈ 45 t ≈ 40 t 

Size (Width × length) 3.4 × 3.4 m 3.4 × 3.4 m 3.4 × 3.2 m 4.2 × 3 m 

Total number of parts  90 193 275 370 

Number of different parts 28 31 30 31 

Modularity 3.21 6.23 9.17 11.94 

Table 1: Comparison of different gearbox concepts. 
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Furthermore, due to the integration of switchable clutches immediately after the first gear stage, the SPPP 

concept offers the greatest potential to improve the utilization capacity and to increase the efficiency during 

partial load operation (see section “Operating Strategy”). 

Generator Topology 

Different electrical machines are evaluated, in order to choose the most suited topology for the application 

as a high-speed WT generator. The evaluation is based on the Esson power coefficient C, which can help 

determine the utilization of an electrical machine. The Esson coefficient sets a direct relation between the 

power that can be obtained from an electrical machine and its volume and speed. It can be calculated 

based on the rotational thrust of the machine σ, which is a design dependent quantity and can therefore 

be used to compare different machine topologies. The rotational thrust is given by the tangential compo-

nent of the magnetic field strength Ht (which is equivalent to the current distribution A) and the normal 

component of the magnetic field induction B. Table 2 shows the rotational thrusts and the Esson coeffi-

cients for different electrical machines. Typical values for other machine parameters (power factor cosφ, 

winding factor ξ and efficiency η), further needed for the calculation of the rotational thrust, are given as 

well. The synchronous machine with permanent magnet excitation (PMSM) displays the highest power 

density. 

Electrical machine Typical values 
Rotational 

thrust 
[kN/m2] 

Esson power 
coefficient 

[kW·min/m3] 

Squirrel cage 
induction machine 
SCIM 

A = 40 000 A/m 
B = 0.8 T 

cosφ = 0.85 
ξ = 0.95 
η = 0.95 

17.4 2.86 

Electrically excited 
synchronous machine 
EESM 

A = 40 000 A/m 
B = 1.2 T 

cosφ = 0.90 
ξ = 0.95 
η = 0.96 

27.8 4.57 

Permanent magnet 
synchronous machine 
PMSM 

A = 40 000 A/m 
B = 1.2 T 

cosφ = 0.90 
ξ = 0.95 
η = 0.97 

28.1 4.62 

Table 2: Rotational thrust and Esson power coefficient for different electrical machines. 

The PMSM also has the highest efficiency, since no copper losses occur, due to the fact that the excitation 

is provided through permanent magnets and no copper winding is necessary. Both synchronous machines 

(PMSM and EESM) display higher efficiency in the low speed range, while the induction machine (SCIM) 

has an efficiency advantage in the field-weakening area (see Figure 2). 

Since the targeted speed of the generator for the developed WT drive train concept is higher than that of 

conventional machine topologies, further requirements have to be regarded. Especially the mechanical 

stress on the rotor of the machines due to centrifugal forces has to be accounted for. For the proposed 

application, the circumferential speed should not exceed 100 m/s, which constraints the maximum radius 

of the rotor at 0.19 m (for the given speed of 5000 rpm). The mechanical stress can also show local hot-

spots, depending on the geometry. In the case of the PMSM for instance, higher stress occurs in the iron 
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bridges around the permanent magnet slots. On the other hand, the rounded shape of the rotor cage bars 

is of some advantage for the SCIM at higher speeds. 

 

Figure 2: Exemplary efficiency ranges for different electrical machine topologies. 

The evaluation and comparison of the different electrical machines sets the base for the subsequent, more 

detailed design study, for which the PMSM and the SCIM are regarded. For the PMSM an existing design 

with V-shaped internal magnets (V-PMSM) is scaled for the power of 1 MW and the speed of 5000 rpm 

and its efficiency map is determined with the help of the finite element method (see Figure 3). The resulting 

design has a volume of 0.1104 m3, a power density of 9.06 MW/m3 and a maximum efficiency of 98.6 %. 

The SCIM is initially designed based on analytical methods. The results for both machine concepts are 

shown in Table 3. 

 

Figure 3: CAD model (exploded view) and efficiency map of the V-PMSM. 
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Electrical machine SCIM V-PMSM 
Outer diameter 478.23 mm 480.00 mm 

Total length (incl. end winding) 621.26 mm 610.00 mm 

Volume 0.1116 m3 0.1104 m3 

Power density 8.96 MW/m3 9.06 MW/m3 

Efficiency 95 % 98 % 

Table 3: Comparison of the considered electrical machine concepts. 

Operating Strategy 

The operating strategy of the proposed drive train concept is identical to conventional WTs during full load 

operation, but extended for partial load operation with the possibility to connect and disconnect individual 

gear trains and generators. The partial load operation needs to be divided into six individual operating 

areas. The torque characteristic of the WT, based on the optimum tip speed ratio λopt and the rated torque 

of the generators, determines the switching points to connect or disconnect individual generators. To 

evaluate the potential of an efficiency increase, an efficiency simulation model is created. In the simulation 

model the main bearing, the SPPP gearbox concept and six V-PMSM generators are considered (see 

Figure 4). The calculation of the power losses is based on [SAE09] for the bearings, on [AND80] and 

[NIE89] for the gear meshing and on [LIN10] for the seals. The losses of the generators are determined 

from the characteristic efficiency diagram of the V-PMSM configuration (see section “Generator 

Topology”). Based on the average wind speed, the power losses of the drive train can be calculated for 

every operating point. 

 

Figure 4: Efficiency simulation model. 

The results show a rise of the efficiency curve from the partial to the full load range, with a maximum 

efficiency of about 93.5 % at full load (see Figure 5). Implementing an operating strategy with individual 

connection of generators shows an efficiency increase in the lower range of the partial load operation. As 
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soon as all generators are switched on (at approximately 83 % rated power), the efficiency curve follows 

the same path as in the case where no switching procedure is used. 

 

Figure 5: Efficiency calculation results. 

Conclusion 

In this paper an alternative drive train configuration with six high-speed generators (rated at 1 MW and 

5000 rpm) for a 6 MW WT was developed. Different gearbox concepts and electrical machines have been 

investigated, in order to determine the potential of a higher power density and an efficiency increase. The 

SPPP gearbox configuration shows advantages regarding both weight and modularity. Efficiency simula-

tion models for the entire drive train were created, considering a V-PMSM topology as a generator. 

Simulation results display an efficiency increase of up to 7 % during partial load operation, provided that 

an operating strategy is considered, where gear trains and generators are individually connected and 

disconnected. 

Learning Objectives 

The results for the SCIM topology shown in section “Generator Topology” were achieved based on rough 

analytical design methods. A more detailed model assuming higher harmonics will be used ([OBE93], 

[OBE07]), in order to assure a fair comparison to the V-PMSM, for which a much higher detail depth was 

achieved with the help of the finite element method. 

Subsequently, based on the dimensions and efficiency results of the different gearbox and generator con-

figurations, a final WT drive train concept will be selected for the structural-dynamic design process. 
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