Comparison of Feedback and Ideal and Realistic Lidar-Assisted Feedforward Individual Pitch Control

Svenja Wortmann1, Florian Haemmerl2, Jens Geisler3, Ulrich Koningosi
1 Technische Universität Darmstadt (TUDa), Control Systems and Mechatronics, Germany
2 University of Stuttgart, Stuttgart Wind Energy (SWE), Germany
3 Servion GmbH, Hamburg

Abstract

Individual pitch control (IPC) for load reduction has been discussed for almost two decades [1]. Different feedback (FB) approaches dominate. Occasionally lidar-assisted feedforward (FF) IPC has been investigated in recent years [5-8]. Both IPC strategies need additional sensors in unequal price categories. For future industrial application a comparison of both strategies regarding their load reduction is of interest to evaluate whether the investment in a lidar system is worth its much higher price.

Lidar simulation:

- Volume measurement included
- Realistic measurement trajectory close to Wind IrisTM:
 - 5 points on a circle
 - 6 simultaneous measurement distances
- Trajectory optimized by means of SWE’s analytical model (AM) [9]
- Direct accounting of wind evolution by filtering the reconstructed wind field characteristics with a first order Butterworth filter (BWF)
- Filter design via transfer function from rotor to lidar area derived by SWE’s AM

- Eliminates unrealistic high frequency fluctuations due to application of Taylor’s hypothesis of frozen turbulence in simulation
- Eliminates frequencies that are not correlated for the specific rotor and lidar measurement configuration

Lidar Assisted Cyclic Pitch Feedforward Control

The inhomogeneous wind field is modelled by a horizontal mean wind speed \(\bar{v}_c \), a linear horizontal \(\Delta \bar{v}_c \), and a linear vertical shear \(\Delta \bar{v}_h \) as an average over the rotor or measuring area. A static compensation of the shear effects is designed.

Parametrization via a simplified model of turbine aerodynamics:

Optimal blade angles \(\beta_n \) for each azimuth angle \(\varphi \) are determined by stationary simulations and simplified afterwards.

Structure of the feedforward control loop:

- No FB IPC added to FF IPC
- FF IPC only used above rated wind speed
- Time shift \(T_B \) by predictive measurement
- Time shift \(T < T_B \) to compensate pitch dynamics and filtering

References of Full Paper

This work is carried out in the framework of the research project “Triples-I Blade Control” by Servion GmbH in cooperation with TUDa and SWE. Part of this research is funded by the German Federal Ministry for Economic Affairs and Energy