Abstract

Offshore wind is at the forefront of energy generation technologies reducing carbon emissions. However, it is expensive for large scale deployment (more than £140/MWh for a typical UK Round 2 site). The costs of Round 3 projects are set to escalate because of remote location and deep-water siting.

For typical offshore wind farms the submarine cable procurement costs are up to 7% of total capital expenditure with the installation costing another 4%. Efficient inter-array cable layouts could achieve up to 10% of total savings in offshore wind.

An optimisation tool for offshore inter-array cable layout design was developed. It takes into account the seabed geo-tech constraints, identifying the locations of multiple offshore collector platforms in large wind farms while minimising the overall capital and operational expenditure of the wind farm collection system.

Objectives

- To minimise the combined CapEx (cable procurement and installation costs) and the net present value of OpEx over the operational years (costs of maintenance, energy losses during normal operation and energy not delivered due to equipment unavailability).
- The number of wind turbines connected to a collector string is constrained by the cable ampacity depending on installation conditions (J-tube, burial depth).
- The construction and installation of offshore collector platforms limits the number of incoming collector strings.
- Inter-array cable crossings are strictly avoided.
- Inter-array cable crossing of exclusion zones, defined using the seabed geo-tech features and the ability to install cables, is strictly avoided.

Methodology

- Stochastic methods to find the near optimum connectivity
 - It is impossible to find the best-of-all-out of the enormous number of connectivity combinations; therefore, this tool uses stochastic approach to find the near optimum solution within given computation time.
 - Greedy algorithm is employed to generate the initial cable connectivity. It randomly chooses one of the incomplete strings and extends it to the nearest unconnected wind turbine. Genetic algorithm is used to further improve the connectivity. It randomly takes the turbines off the connectivity for further shuffling. Then it randomly picks up one of the unconnected turbines and identifies the route to the nearest connected turbines.
 - Kmeans++ algorithm to optimise the locations of multiple substations
 - It classifies the wind turbines into several clusters according to geographical metrics and then it finds the centre of gravity for each cluster. This approach allows the minimisation of costs for connecting the wind turbines within the cluster.
 - Graham’ scanning algorithm to bypass exclusion zones
 - It is applied to find the shortest zigzag path between two turbines when the connection route has to avoid exclusion zones. The visibility graphs, composed by the edges and vertices of the exclusion zones, are firstly identified between any pair of wind turbines and then the shortest zigzag cable route is found using a greedy algorithm.

Conclusions

An optimisation tool is developed for inter-array cable layout design. Employing stochastic approaches this tool can quickly find a near optimal cable connectivity solution using one of several criteria including CAPEX, OPEX, system availability or combinations thereof. The seabed geo-tech information is taken into account to minimise cable routes across difficult to install seabed areas and to avoid cable routes through excluded sea zones. The tool employs self-start identification of locations of multiple offshore collector platforms for large wind farms.

References

Appendix

A Demo Case

This optimisation tool was applied for the inter-array layout design of one demo wind farm with 119 turbines rated at 6 MW. The seabed within the wind farm boundary was classified into 5 installation zones and several exclusion zones were also defined. The collector system will use 33 kV subsea cables with two HVAC collector platforms. It was assumed that the price of wind energy is £150/MWh, the annual discount rate is 8% and the designed operational life is 20 yrs.

<table>
<thead>
<tr>
<th>Seabed categories</th>
<th>Cable installation costs (£/m)</th>
<th>Cable maintenance costs (£/m/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>300</td>
<td>5.3</td>
</tr>
<tr>
<td>B</td>
<td>600</td>
<td>5.7</td>
</tr>
<tr>
<td>C</td>
<td>600</td>
<td>6.2</td>
</tr>
<tr>
<td>D</td>
<td>600</td>
<td>7.0</td>
</tr>
<tr>
<td>E</td>
<td>750</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Results

Connectivity after 500 greedy runs

Final connectivity

Subsea cables
- 0.015/km/yr
 - 2160 hours
- MV breaker
 - 0.025 yr
 - 120 hours

Conclusions

An optimisation tool is developed for inter-array cable layout design. Employing stochastic approaches this tool can quickly find a near optimal cable connectivity solution using one of several criteria including CAPEX, OPEX, system availability or combinations thereof. The seabed geo-tech information is taken into account to minimise cable routes across difficult to install seabed areas and to avoid cable routes through excluded sea zones. The tool employs self-start identification of locations of multiple offshore collector platforms for large wind farms.