
Currently, the possible (or available) power of a down-regulated wind farm is calculated
as the summation of all individual possible power signals. However, this is a clear over-
estimation considering the reduction in the wake deficit during downregulation. The
main challenges of available power estimation are:

Introduction

 Real-time wind farm scale available power estimation
 Also to be used for real-time wind farm power curve

 Second-wise effective wind speed estimation using Active Power, Pitch and
Rotational Speed. Validated using:

 Horns Rev-I (optimum operated +  down-regulated)
 Thanet (optimum operated +  down-regulated)
 Lillgrund (optimum operated)
 NREL 5 MW (down-regulated)

 Effective wind speeds are used to estimate the atmospheric turbulence intensity
and together they are used to calibrate GCLarsen single wake model for real-time
 Significant improvement in wake recovery around ± 5° relative wind direction

bin
 The calibrated model is then run on wind farm scale

 Promising results were obtained applying time delay: maximum average error
of 15.5%

Conclusion

Future Works
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Determine the wind speed at the turbine level since the accuracy of nacelle 
anemometers are in question and power curve derivation is no longer applicable during 
downregulation 

Apply a real-time wake model which can calculate the power production as if the wind 
farm was operating normally even in short downregulation periods. However, most existing 
wake models have only been used to acquire long term, statistical information and verified 
using 10-min averaged data- Therefore, one of the existing models has to be re-calibrated 
using the                                                                and the

Using the general power expression; 𝑃 =
1
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𝜌𝐴𝑟𝑜𝑡𝑜𝑟𝑐𝑃 𝜃, λ 𝑈𝑒𝑓𝑓
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The wind speed was calculated for each turbine iteratively using Horns
Rev-I, Thanet and Lillgrund offshore wind farms and NREL 5 MW single
turbine simulations [3]. Both cases have been investigated using
second-wise datasets extracted during both normal operation and
under curtailment.

Effective Wind Speed Estimation 

Theory & Test Cases

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 & 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
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Active Power Output - Downregulation, Horns Rev
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Rotational Speed - Downregulation, Horns Rev
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Pitch Angle Signal - Downregulation, Horns Rev

Estimation of 𝐂𝐏 (𝛌, 𝛉)
analytical model by Heier (1998)

𝐶𝑃 𝜆, 𝜃

= 𝑐1
𝑐2
𝜆𝑖
− 𝑐3𝜃 − 𝑐4𝜃

𝑐5 − 𝑐6 𝑒𝑥𝑝
−𝑐7
𝜆𝑖
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The coefficients in the expression, 𝑐1 to 𝑐9, strongly
depend on the blade shape, in other words, the turbine
type. They have been adjusted according to the
turbines in the case studies, partially using the research
of Raiambal et.al.[2] and partially the dataset itself.
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Horns Rev & Thanet
The algorithm is tested using the dataset provided by Vattenfall which covers a 35-hours
period for Horns Rev, 47 hours for Thanet and 24 hours for Lillgrund where the whole
operational range is contained i.e. below cut-in to above rated region.

Horns Rev – DownRegulationNREL 5 MW

NREL 5 MW is an artificial turbine widely used in simulations since -contrary to
commercial turbines- all the aerodynamic and geometric properties are
published [3]. The scenario is 50 % downregulation with a simulated mean wind
speed of 13 m/s.
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NREL 5 MW Simulations
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Umodel and error

Usimulation
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Conclusion: the model is able to reproduce the wind speed averaged over the rotor for ;
1. Horns Rev - I (Vestas V80 - 2MW offshore), Thanet (Vestas V90 – 3MW offshore) and Lillgrund

(Siemens SWT-2.3-93) offshore wind farms
2. NREL 5 MW simulations
Under both normally operated and downregulated cases.

GCLarsen Wake Model Re-calibration for Real Time

The second dataset from Horns Rev covers approximately 2 hours of data
extracted during down-regulation. In Figure 2 (a), the characteristics of the
downregulation which in total lasts approximately one hour may be seen.
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Effective wind speed
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Re-calibrated Model Results – Single Wake

The single wake model proposed by GCLarsen has been used for recalibration due

to its robustness and simplicity. The model has been implemented in WindPro and

shown to perform well also on offshore [4]. The GCLarsen velocity deficit for single

wake is derived as below [5] with two variables that were modelled in terms of

thrust coefficient, 𝑐𝑇 and atmospheric turbulence intensity, 𝑇𝐼.
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With 𝑥0 = 𝒂 ∙ 𝑐T
𝐛 and 𝑐1 = 𝒄 ∙ 𝑐T

𝐝 + 𝒆 ∙ 𝑻𝑰. The estimated second-wise effective

wind speed values in Thanet during normal operation were used for calibration

and the model is validated on Horns Rev data. For recalibration of the wake

model, all data was filtered for north-west perpendicular winds i.e. 320±30°. The

model was fit to the dataset using nonlinear least squares estimates.
The original GCLarsen model significantly under-predicts the downstream wind speed for the

second-wise dataset. Better recovery achieved by the recalibration can be observed even for

90°±5° bin.

Time it takes for a particle to move form the most
upstream turbine(s) to the current turbine

Time Delay =
Upstream Distance

Average Wind Speed

• Upstream Distance is calculated using the most upstream
turbine location and the averaged wind direction

• The effective wind speed at the most upstream location
is averaged to approximate the time delay over 90mins

Conclusion: the recalibrated GCLarsen wake model is
able to reproduce the downstream effective wind
speed for single wake case. On farm scale, time delay
is critical for validation cases and the model can be
further enhanced by a dynamic time delay algorithm
as well as practically introduced meandering. The
finalized algorithm can easily be used to achieve real-
time wind farm power curve under various
operational conditions.

The Percentage Error of the wind speed estimation using Re-calibrated GCLarsen model in
Thanet- Averaging Period = 90mins

Re-calibrated Model Results – Farm Scale

Thanet dataset also includes curtailment which can be seen between 1.4 and 1.5 ·105 .
The power curve is not representative after that point but the agreement between
the effective wind speed and the nacelle wind speed proceeds with the same trend.

For Lillgrund, estimated effective wind speed is in a very good agreement with the
synchronous met-mast data where nacelle anemometer measurements seem to
include high level of noise.

 Re-parameterization of the wake algorithm considering meandering
 Pragmatic approach using wind direction fluctuations [6]

 Real-time wake model implementation on other offshore wind farms
 Beginning with Horns Rev

 Uncertainty estimation of the available power estimation procedure in practice today
and the developed algorithm

 Summation of individual available powers vs. algorithm described
 Validation of the final algorithm via wind farm scale experiments on Horns Rev

 See Gregor Giebel’s poster titled ‘Experimental verification of a real-time
power curve for down-regulated offshore wind power plants’ PO.ID 087!

EWEA Offshore 2015 – Copenhagen – 10-12 March 2015

estimated effective wind speeds turbulence intensity

Estimation of the Atmospheric 

Turbulence Intensity

The turbulence is a very important concept in wake modelling as it contributes the wake
recovery while increasing the fatigue loads on the downstream turbine(s). It is taken into
consideration in the wake model re-calibration process in terms of atmospheric turbulence
intensity, 𝑇𝐼 =  𝜎𝑈

𝑈. It was computed using synchronous data extracted from the met-mast
and the SCADA of the most upstream turbine in Lillgrund offshore wind farm during a winter
and a summer day to see the seasonal effects.

Conventionally, the TI 
implemented in the 
analytical wake model 
applications is estimated 
using the met-mast data. 
However here, the TI is 
approximated using 
effective wind peed since

1. the wind speed is 
estimated purely from 
the SCADA 
measurements

2. concurrent met-mast 
data is generally not 
available.

Conclusion:
1. The effective wind speed (effWS) performs better than the nacelle wind

speed (nws) when estimating the atmospheric turbulence intensity
2. effWS is in a good agreement with the met-mast data -> suitable to use

in the wake model re-calibration
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