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The scaling law that is commonly used for testing

floating offshore wind turbines in wave tank facilities

assumes the same Froude number (𝐹𝑟) for the full-

scale and the scaled models. This results in a large

mismatch in the Reynolds number (𝑅𝑒) and

consequently in highly different model rotor

aerodynamics. This paper proposes an innovative way

of scaling, here referred to as “aerodynamic scaling”.
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Letting 𝑛𝑙 be the geometry scaling, the ”aerodynamic

scaling” involves scaling time with 𝑛𝑡 = 2𝑛𝑙.

PRO

 Models are characterized by a lower 𝑅𝑒 mismatch

(see Table 1): better quality of the aerodynamics and

proper fluid kinematics (same tip speed ratio) [1].

 Unlike Fr scaling, model blades chord can be kept

unchanged: possible to equip the model with aero-

elastically scaled blades [2] and perform tests

focused on FOWT aero-servo-hydro-elasticity.

 Possible to reuse wind tunnel wind turbine models.

CONS

 Model 𝐹𝑟 is not preserved (see Table 1): model

restoring forces due to gravity are  1 4𝑛𝑙 times lower

than what is required to balance the aerodynamic

forces.

 Under the hypothesis of full-linear dynamic system,

model platform displacements are  1 4𝑛𝑙 times greater

than the full-scale ones.

 Mismatch between full-scale and model relative

placement of platform modes wrt. rotor harmonic.

A solution that overcomes these drawbacks is here

presented.

1. Introduction

Quantity Symbol

Scaling factor

“Aerodynamic

scaling”

Reynolds number

Froude number 1

Mach number

Table 1: 𝐹𝑟 scaling vs. “Aerodynamic scaling” 

 NREL offshore 5-MW Wind Turbine, OC4-DeepCwind

floating semi- submersible platform, three slack,

catenary lines mooring system.

 A body mass 𝑀𝐹𝐴 fixed on top of a massless spring

𝐾𝐹𝐴 and a damper 𝐶𝐹𝐴 simulates the dynamics of the

first fore-aft tower mode [3].

 Four generalized coordinates:

Non-linear Equation of Motion (EoM):

2. Simulation model

𝑩

 Aerodynamic forces:
𝜆: Tip speed ratio, 

𝛽𝐶: Blade pitch angle

3. Match full-scale platform restoring properties

4. Simulation results

5. Conclusions 
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 Hydrodynamic forces (Morison’s equation):

 𝑢 𝑧 , 𝑢(𝑧): waves acceleration and velocity

𝑇𝑔 and 𝛽𝐶 outputs of torque and pitch closed-loop

controllers [4], Ω is the rotor speed.

Simple example (sin 𝜃𝑃 = 𝜃𝑃):

• Thrust force: 𝑇 =  1 2𝜌𝐴𝑉2𝐶𝑇
• Bodies weight – Buoyancy: 𝑊 = 𝑀𝑔
• Moments equilibria: 𝑇𝑍𝐻 = 𝑊 sin 𝜃𝑃 𝑍𝑃

• Full-scale platform pitch: 𝜃𝑃
𝐹 =

1

2
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• Model pitch: 𝜃𝑃
𝑀 =

1

2
𝜌𝐴𝑛𝑙

2𝑉2  
𝑛𝑙
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 Simulations of full-scale and model (𝑛𝑙 =
1

45
) free-

decays and responses to irregular waves (𝐻𝑆 =
3.37 𝑚, 𝑇𝑆 = 7.03 𝑠) with ODE of Matlab.

 Steady wind 𝑉𝑟 (approx. 11  𝑚 𝑠 for full-scale).

Waves scaling:  𝑢𝑀 =  1 2  𝑢𝐹 and  𝑢𝑀 =  1 4𝑛𝑙  𝑢𝐹.

Goal is the best possible matching (with small restoring

matrix cross-terms) of the full-scale 𝜔𝑖
𝐹 and back-scaled

model 𝜔𝑖
𝑀 platform pulsations (𝑖 = 1: surge, 𝑖 = 2: pitch,

𝑖 = 3: heave), respectively solutions of the problems

with

Constraints 𝒈𝒔 𝒑𝒔 ≤ 0 prevent collision of upward

moorings with model blades for a wide range of platform

motions.

WITH UPWARD MOORINGS AND TUNED 

The RAOs and time histories of the platform motions

during a free decay simulation with an initial pitch

perturbation clearly show the improved match.

How to improve the model platform restoring properties:

 tune the downward moorings mass per unit length ,

 add three pre-tensioned upward moorings connected

to the facility ceiling.

𝐸𝐴: stiffness

𝑇𝑒: pretension

finds the optimal fairlead 𝑓𝑚 and anchor 𝑎𝑚 distances

from platform center of the upwind ∙ 𝑢 and downwind

∙ 𝑑 upward moorings, their line stiffness 𝐸𝐴 and pre-

tension 𝑇𝑒 , the ceiling height 𝑙𝑚 and the downward

moorings mass .

• The optimal configuration that provides

these results is depicted on the figure.

• Upward moorings properties: 𝑇𝑒𝑢 =
75 𝑁, 𝑇𝑒𝑑 = 50𝑁, 𝐸𝐴𝑢 = 1.52 ∙ 104  𝑁 𝑚 ,
𝐸𝐴𝑑 = 1.70 ∙ 104  𝑁 𝑚, 𝑙𝑚 = 4.1 𝑚.

• Measures to overcome the mismatches are neither

expensive nor complicated.

• Useful approach for tests focused on wind turbine

aeroelasticity, control and CFD validation.

• Same wind turbine models used for wind tunnel tests 

can be used also in wave-wind tank tests.
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 Damping forces:

Moorings forces 𝑭M computed with a

quasi-static approach [4].

 Buoyancy forces:

 Kinetic and potential energies:

The following constrained optimization problem

Full-scale: steady equilibria 

at rated wind speed Vr

Model with upward 

moorings:  steady equilibria 

at rated wind speed Vr

WITHOUT UPWARD MOORINGS

Significant mismatch between full-

scale and model:

 equilibria  𝒒 over wind speed

 platform and tower RAOs


