Rotor aerodynamics for tank testing of scaled floating wind turbines

Floating structures for offshore wind turbines are a promising alternative to bottom mounted foundations for water depths beyond 50m. A number of countries with deep water areas could expand their potential for offshore sites for renewable energy production. Floating wind turbines could reduce the costs of energy for deep water sites significantly. However, up to date only a few full scale prototypes are in operation. The challenge of state-of-the-art design of floating wind turbine systems is the reliable prediction of the dynamics and the loading in terms of interaction of wind and wave environment. There are many simulation codes in the oil & gas and the wind energy industry available which are validated and proven for either wind or wave loading. But tools which cover both, wind and wave dynamics on the entire floating system, are rare. In this development period scaled model tests can provide valuable data to validate a new generation of simulation tools for floating wind turbines.

Two alternative approaches for scaled rotor aerodynamics

The relevant non-dimensional numbers for physical accurate scaling of wind turbine numbers are the Froude (Fr) and Reynolds number (Re). While the Froude number is representing gravity forces and the dynamics of the submersed floating structure the Reynolds number applies for scaled viscous and friction forces of the rotor aerodynamics. Both scaling principles acting directly to contrary direction with respect to geometrical dimensions of the scaled model. In order to match with the hydrodynamics the Froude scaling dominates the model dimensions and masses by compromising correct aerodynamic representation. Within the presented test campaign two rotor model approaches have been analysed to improve the opposed effects of water and air impact on a scaled model:

Froude scaled rotor

Correct Froude-scaling of:
- rated rotor speed \(\omega \)
- wind speed \(u \)
- thrust force \(F_{\text{thrust}} \)

Set thrust coefficient \(\eta_{\text{F}} \) through blade pitch angle \(\beta \) t.

\[F_{\text{thrust}} = \frac{1}{2} \rho u^3 \eta_{\text{F}} \sin \beta \]

Advantages and disadvantages of Froude rotor scaling

- thrust, aerodynamic damping
- 1P, 3P forcing frequencies, gyroscopic forces
- structural frequencies, deflection due to loads
- KC number, Lock number
- Tip Speed Ratio (TSR), Reynolds number, aerodynamic torque
- generator torque, rotor-tower interaction

Ducted fan and software in the loop (SIL) control

Advantages and disadvantages of Ducted fan (SIL) approach

- thrust, aerodynamic damping, complex wind load situations, controller influence, cost effective & flexible
- turbulence, gyroscopic effect, aerodynamic torque, generator torque, rotor-tower interaction

Measurement Results

In October 2014 the INNWIND.EU partners of work package 4.2 performed a measurement campaign at Ecole Centrale de Nantes, France, (LHEEA). The design of the floating model is based on the OC4/DeepCWind semi-submersible with a scaling factor of 1:60 and a 10MW upscale NREL wind turbine on top. Further details are given in [1]. Both rotor models as described above have been tested. For the Froude scaled rotor a wind tunnel with a movable 3x3m² outlet has been applied (wind speed range from 0.5 to 15 m/s).

Free decay test pitch motion of Froude scaled rotor

Conclusions

The representation of aerodynamics in todays tank test facilities needs further improvement and comparison with results from high Reynolds number wind tunnel measurements. The software controlled ducted fan (SIL) is a suitable approach to model the main aerodynamic rotor effects simultaneous to wave dynamics – thrust and aerodynamic damping in line with controlled wind speeds. Modeling of rotor torque and gyroscopic effects (and corresponding roll motion) still remains a shortage of todays tank testing configurations.

A complete set of test data will be published on www.INNWIND.EU.

References

Acknowledgements: The research leading to these results has received partial funding from the European Community’s Seventh Framework Programme under grant agreement No. 308974 (INNWIND.EU).

EWEA Offshore 2015 – Copenhagen – 10-12 March 2015