Vestas V90-3MW Wind Turbine gearbox health assessment using a vibration-based Condition Monitoring System

Antonio Romero¹, Yoann Lage¹, Slim Soua², Bin Wang², Tat-Hean Gan¹,²

TWI Ltd¹, Condition Monitoring Section, United Kingdom
Brunel University², School of Engineering and Design, United Kingdom

Abstract

An advanced Condition Monitoring System (CMS) has been developed as part of the CMSWind FP7 Project for the assessment of wind turbine rotating parts. The validation of the system is presented in this poster. It was carried out during field trials at Bandirma Wind Energy Power Plant on a Vestas V90-3MW Wind Turbine.

This integrated CMS, which utilizes three techniques specifically designed for wind turbines and their components (Acoustic Emission, Vibration Analysis and Motor Current Signature Analysis), will improve wind turbine machinery reliability. This estimation is made from the fact that unnecessary maintenance and out of service wind turbines are reduced or even eliminated, improving reliability and operation. The work described in this poster will show the application of the CMSWind System for enabling the prompt detection of changes in the gearbox health using Vibration Analysis. A new methodology based on the development of a baseline profile for the promptly detection of arising defects and their worsening with time is proposed. The results demonstrate that the proposed method is effective in the health identification of wind turbine rotating machinery.

Problem and solution proposed

In order to keep the huge amount of wind turbines running safely, continuously and profitably is challenging. The industry still experiences premature turbine component failures, which leads to increases in the operation and maintenance (O&M) costs and subsequently, the downtime of the turbine. O&M costs are attracting greater attention, as there is a need for the industry to reduce the turbine downtime, increasing its reliability and decreasing the cost of the energy (COE).

CM is defined as the process of periodically or continuously sense, measure and record selected physical parameters which are associated with the condition of the machinery such that a significant change is a sign for a developing failure. It is applied for the interim purpose of:

1) Detecting incipient failures early in advance so catastrophic failures are avoided;
2) Reducing, analysing, comparing and displaying the data and information to enable more cost-effective O&M (proactive instead of reactive maintenance);
3) Assessing component performances and helping to redesign them for longer life and reduce the costs.

Baseline Algorithm

The number of events recorded at low speed is very low as can be observed in the 3D plot. In these bins in particular, where there is not convergence of the method. It has been noticed that the number of data clustered in them is less than 70 files. It does not mean that provisional values cannot be given to the limits. It means that more data is required in order to average the current value more and set the limits in a more confident way.

Conclusions

• This poster presents the methodology and algorithms involved in the health monitoring baseline generation for a Vestas V90-3MW.
• According to the information provided by the wind farm operator, the status of the wind turbine was healthy during the whole field trials.
• The data gathered between May and October 2015 was examined in detail and no major variabilities were identified.
• The results do not show any symptoms of defect, corroborating the information provided by the operator.
• The baseline generated can be defined as an identification profile of that particular type of turbine.
• More data is required in order to average the current values stored at low speed in order to set the limits with more confidence.
• The algorithm is able to identify RMS deviations from the RMS target, allowing the operator to take preventive decisions concerning the wind turbine safety.

References