What’s next for wind energy forecasting systems?

Current and future requirements seen from a utility’s point of view

Dr. Tilman Koblitz
Optimization Continental Manager
Vattenfall Energy Trading

2015.10.01
Production forecasts:
- **Wind power**: 2.7 GW
- Solar power: 350 MW

Demand forecasts:
- Gas demand: 1.9M customers
- Power demand: 9.4M customers
Today, BA Markets maximizes the value of our wind portfolio

Total installed capacity of wind portfolio: **2.7 GW**

- **Onshore:** 1.6 GW
- **Offshore:** 1.1 GW
- **Under construction:** 1.1 GW

Vattenfall’s wind asset portfolio

Source: https://corporate.vattenfall.elbformat.de/magazine/wind
Renewables forecast

Current wind power forecasting (FC) process

- Global weather model
- Mesoscale weather model
- Weather FC: local, aggregated
- Renewables model
- Power FC: local, aggregated
- Wind speed FC: local, aggregated
- Park/turbine model: physical and/or statistical
- Wind power FC: local, aggregated
Vattenfall’s Forecasting System

Data flows and IT landscape

Input data
- Portfolio Information
- Allocation data
- Realtime data
- Curtailment Notifications
- Availability Notifications

External Forecast
- Weather FC Provider A
- Weather FC Provider B
- Power FC Provider C
- Power FC Provider D

Forecast system
- Data import
- Data pre-processing
- Calculation Visualization Analysis
- Data post-processing
- Data export

External tools
- General tools
- Custom tools
- FC models

ETRM systems
- System A
- System B
- System C

What's next for wind energy forecasting systems? | Dr. Tilman Koblitz | 2015.10.01
Vattenfall’s Forecasting System

Operative issues in 2015

<table>
<thead>
<tr>
<th>Impact</th>
<th>No. of operative issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>Realtime data</td>
</tr>
<tr>
<td></td>
<td>Turbine outages</td>
</tr>
<tr>
<td></td>
<td>External forecasts</td>
</tr>
<tr>
<td></td>
<td>Weather data</td>
</tr>
<tr>
<td></td>
<td>Allocation data</td>
</tr>
<tr>
<td>medium</td>
<td>External tools</td>
</tr>
<tr>
<td></td>
<td>Forecast system</td>
</tr>
<tr>
<td></td>
<td>Forecast model</td>
</tr>
<tr>
<td>low</td>
<td>Forecast export</td>
</tr>
</tbody>
</table>

What’s next for wind energy forecasting systems? | Dr. Tilman Koblitz | 2015.10.01
Vattenfall’s Forecasting System

Operative issues in 2013-2015

<table>
<thead>
<tr>
<th>Impact</th>
<th>2015</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realtime data</td>
<td>high</td>
<td>medium</td>
<td>low</td>
</tr>
<tr>
<td>Turbine outages</td>
<td>high</td>
<td>medium</td>
<td>low</td>
</tr>
<tr>
<td>External forecasts</td>
<td>medium</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Weather data</td>
<td>low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allocation data</td>
<td>low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecast system</td>
<td>low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecast model</td>
<td>low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecast export</td>
<td>low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downstream</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What's next for wind energy forecasting systems? | Dr. Tilman Koblitz | 2015.10.01
What’s next? - Evolution of operative issues

Impact

- Increasing
- Decreasing

Frequency

- Decreasing
- Increasing

Bubble size:
- No. of issues

Bubble color:
- Current impact
- Low
- Middle
- High

Vattenfall’s Forecasting System

External tools

Forecast export

External forecasts

Forecast model

Turbine outages

Realtime data

Allocation data

Weather data

Forecast system
What’s next? – Future wind power forecasting (FC) process

- More advanced power production models
- More complex weather inputs:
 - Higher number of meteorological variables
 - Improved probabilistic forecasts
- More advanced and flexible weather models
 - Assimilation of realtime data
 - Higher update frequency (rapid cycle updates < 1h)
 - Updates tailored to operational schedules
 - Higher resolution to include local effects

Vattenfall is exposed to an increased weather risk.
Vattenfall’s Forecasting System

Current and future requirements

Business objectives:
- Operational risk reduction
- Increase cost & process efficiency
- Business decision support
- Enable business growth
- Improving time to market

User perspective:
1. Reduce manual work (-arounds)
 - Optimize the quality & efficiency of FC models & processes
2. Improved system support (adequate response times for troubleshooting)
 - Optimized analysis tools

Functional / Non-Functional:
3. Process automation & monitoring (status, logbook, …)
 - Flexible & reliable interfaces to IT landscape
 - Data processing (import, validate, aggregate, export, …)
 - System performance & availability
Main areas of improvement:

1. Reduced manual work (-arounds)
2. Improved System support
3. Process automation & monitoring

Desired setup with integrated models & tools:
Thank you for your attention!

Contact for questions:

• Tilman Koblitz tilman.koblitz@vattenfall.com
• Forecasting team forecasting@vattenfall.com