MAXIMIZE PLANT PERFORMANCE:
Data mining to implement a better O&M strategy

Presenter:
Daniel W. Bernadett, P.E.
Chief Engineer
• What is the objective of performance optimization and how is it executed?
• What role does data mining play?
• What are some typical performance indicators?
• Case study with Infigen Energy
How do I get back to my expected production levels?

• Benchmark performance based on realized wind & other conditions
• Identify causes of lost energy
• Implement corrective actions that yield positive returns on investment
Who Uses The Data?

• Plant Owners / Operators
 – Asset Managers
 – Corporate Finance
 – Site Managers
 – Operation and Control Center
• Investor / Partner
• Independent Service Provider
• Turbine Manufacturers
• Insurance Companies
Performance Optimization – General Process

SCADA Data Mining → Climatologic Data Analysis → Turbine Technology

Calculate Turbine Specific Power Curves and Lost Energy

Identify Root Cause

Implement Corrective Actions

Quantify Results

Repeat Annually
What Role Does Data Mining Play?

Data Mining: Finding patterns and knowledge from numerous fields in large relational databases.

Involves: Adaptive analytics & machine learning techniques, such as cluster analysis and anomaly detection.

Objective: Distilling actionable intelligence (i.e., gold nuggets) from an overwhelming amount of information.
How Lost Energy is Calculated

• Diagnostic analysis using 10-minute SCADA data, site meteorological data, and monthly operating reports.

• Identify ‘normal performance’ for individual turbines to understand where underperformance occurs.

• Quantify lost energy and the potential for it to be recovered.
 – Adjustment to maintenance strategy and/or control settings
Examples of Diagnostic Performance Indicators

• **Lost Energy**
 - Determine “baseline” power curve for turbines
 - Understand how/why energy is lost

• **Availability**
 - Standard contracts are time-based guarantees
 - OEMs are moving to production-based guarantees
 - Many exceptions

Photo credit: Dan Bernadett, AWS Truepower
Examples of Diagnostic Performance Indicators

• **Energy to Downtime (EDT) Ratio**
 – EDT = Lost Energy/Lost Time
 – Turbines fail when systems are working hardest
 – Under time-based guarantees, this results in more lost energy than time
 – AWST uses EDT to track lost energy so that it can be minimized
 – Focus on EDT has reduced lost energy throughout the industry
 – 5-years ago typical EDT = 1.15, now ~1.05
Turbine Power Curves

Create power curves for each turbine.

Filter data to define baseline power curve.

Deviations from baseline indicate lost energy:

- Failed Nacelle Anemometers
- Curtailments
- Turbine Downtime
- Icing
- Underperformance

Pitch errors have high EDT since they occur near rated power at the “knee” of the power curve.
AWS Truepower partnered with Infigen Energy to optimize performance of a wind farm over a period of 4 years.

- 100 MW+ plant rated capacity
- MW scale turbines
A Case Study – Discussion of Events

Year 1: 2.9% loss due to large number of manual stops for maintenance.

Y1 EDT = 1.16

Data analysis used to refine scheduled maintenance plan.

Years 2 - 4: reduced maintenance losses to 0.6%. **EDT = 0.85**
A Case Study – Discussion of Events

Year 2: Pitch Lubrication Faults were excessive, resulting in 0.3 - 0.4% loss. **EDT=1.27**

Problem: turbine pitch bearing auto-greasers – daily restart required.
EDT lowest 6-8 am for the re-start.
Reduction to 0.1% - 0.2% loss in Year 3 and Year 4. **EDT = 0.7**
Year 2: Current Asymmetry Level event code. **EDT = 2.1**

Issue associated generator issues at high wind speeds.

OEM completed a generator retrofit, which eliminated the problem.

Reduction to **0.0% loss** after Year 2.
A Case Study – Performance Indicator Summary

<table>
<thead>
<tr>
<th>Fault</th>
<th>Yr 1 loss</th>
<th>Yr 2 loss</th>
<th>Yr 3 loss</th>
<th>Yr 4 loss</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual softstop</td>
<td>2.9%</td>
<td>0.5%</td>
<td>0.6%</td>
<td>0.5%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Pitch system</td>
<td>0.3%</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Current asymmetry</td>
<td>0.1%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Manual softstop minimized to 0.5-0.6% per year, consistent with a 60 hrs/turbine/year maintenance contract at an EDT of 0.85.

Pitch system loss and EDT minimized due to changes in auto-greaser protocol EDT from 1.27 to 0.7.

Current asymmetry issues resolved by OEM retrofit.
Summary

• Performance optimization improves energy production and increases return on investment from assets.

• Performance optimization benefits from data mining to derive actionable intelligence.

• The case study with Infigen Energy illustrates the magnitude of performance improvement achieved at one project.
Parting Questions

• Is your performance review program as robust as it should be? Is it an important part of your O&M program?
 – Third party audits/reviews can help.

• Are you making the greatest use of your project data?
 – Data mining will help you evaluate which actions will maximize energy production at minimum cost

• Are you gathering enough data and the right data to drive the most informed decisions?
Questions and Follow-up

Ph: +1 518.213.0044
Email: contactus@awstruepower.com
www.awstruepower.com

Daniel W. Bernadett, P.E.
Chief Engineer