

# Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound

Andreas Fischer Helge Aagaard Madsen Knud Abildgaard Kragh Franck Bertagnolio

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x)$ 

DTU Wind Energy Technical University of Denmark P.O. 49, DK-4000 Roskilde, Denmark asfi@dtu.dk

**DTU Wind Energy** Department of Wind Energy

### (Normal) Amplitude Modulation (NAM) of Wind Turbine Noise [1]



- swishing sound radiated when the blade moves downwards
- Peak to trough level a few dB
- Normally only perceived close to the wind turbine (1-2D)
- Can be explained by the directivity of trailing edge noise



### Directivity of noise emitted from an airfoil with finite chord length [3]

### (Other) Amplitude Modulation (OAM) of Wind Turbine Noise [1]



- Described as thumping sound
- More low frequency content and higher peak to trough level than normal AM
- Perceived at larger distance from the wind turbine
- Perceive at up and downwind locations
- Transient stall as a possible explanation



7 July 2014

### Directivity of noise emitted from an airfoil with finite chord length [3]





- Investigate the source of trailing edge noise and stall noise (surface pressure field) on a full scale wind turbine rotor
- Relate surface pressure field to emitted far field sound
- Identify wind conditions which can lead to OAM
- Outline control strategies to alleviate OAM

#### Outline

- Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)
- Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)
- Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)
- Control strategies to alleviate (Other)AM
- Conclusions

#### Outline

- Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)
- Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)
- Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)
- Control strategies to alleviate (Other)AM
- Conclusions

# NEG-Micon NM80 Wind turbine with inflow sensors

**DANAERO MW project [4]**, Vestas, Siemens, LM Wind Power, DONG Energy, DTU, 2007-2010



- Pressure tabs at r=13m, 19m, 30m and 37m
- Pitot tubes at r= 14.5m, 20.3m, 31m and 36m
- 60 Microphones at r=37m for high frequency surface pressure measurements

### Four 5 hole pitot tubes installed on a NM80 turbine

#### **Campaign measurements from June to September 2009 – DANAERO MW project**







### NEG-Micon NM80 Wind Turbine (DANAERO MW project)

DTU

- Technical Data:
  - -Rated power 2.3MW
  - Hub height 57m
  - Rotor diameter 80m
  - -LM38.8 blades
- Unusual operational conditions:
  - Constant rotational speed (16.23rpm = 1.7rad/s)
  - Pitch -4.5° (towards higher AoAs, forced to stall)
  - -High wind speed (above 12m/s at hub)
  - -Yaw +/-10°



# Wind velocity profile measured at the met mast on Sept. 1, 2009 (10min average)

10:00



11:40



# Wind velocity profile measured at the met mast on Sept. 1, 2009 (10min average)

10:00



11:40



# Surface pressure level on suction side at x/c=0.84, Sept. 1, 2009 (evaluated every 0.5sec)



10:05

11:48



### **Aerofoil Pressure distribution Sept 1, 2009, 11:48**





### Electrical Power and Angle of Attack, Sept 1,



#### Outline

- Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)
- Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)
- Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)
- Control strategies to alleviate (Other)AM
- Conclusions

### **Virginia Tech Stability Wind Tunnel**



16 DTU Wind Energy, Technical University of Denmark

EWEA Conference 2014, Barcelona, Spain

7 July 2014

### **Virginia Tech Stability Wind Tunnel**



17 DTU Wind Energy, Technical University of Denmark

EWEA Conference 2014, Barcelona, Spain

7 July 2014

### **Virginia Tech Stability Wind Tunnel**



18 DTU Wind Energy, Technical University of Denmark

EWEA Conference 2014, Barcelona, Spain

7 July 2014

### Prediction of far field sound pressure with measured surface pressure





#### Outline

- Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)
- Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)
- Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)
- Control strategies to alleviate (Other)AM
- Conclusions

### **DANAERO MW Project 2009**

Vestas, Siemens, LM Wind Power, DONG Energy, DTU



### Pitot tube mounted at radial position r=36m



#### Siemens 3.6 MW Turbine

EWEA Conference 2014, Barcelona, Spain



### **DANAERO MW Project 2009**

Vestas, Siemens, LM Wind Power, DONG Energy, DTU



#### Høvsøre Test Site

|  | Sensor                                                                                                                    |          |
|--|---------------------------------------------------------------------------------------------------------------------------|----------|
|  |                                                                                                                           | Position |
|  | Cup anemometer, boom mounted on aviation met mast                                                                         | 160m     |
|  | Cup anemometer top mounted                                                                                                | 116.5m   |
|  | Cup anemometer, wind vane, sonic anemometer,<br>temperature, differential temperature, relative<br>humidity, air pressure | 100m     |
|  | Cup anemometer, sonic anemometer, differential temperature                                                                | 80m      |
|  | Cup anemometer, sonic anemometer, differential temperature, wind vane                                                     | 60m      |
|  | Cup anemometer, sonic anemometer, differential temperature                                                                | 40m      |
|  | Sonic anemometer                                                                                                          | 20m      |
|  | Cup anemometer, sonic anemometer, differential temperature, wind vane                                                     | 10m      |

# **Correlation of wind shear to variations in angle of attack**



March 28, 2007



# **Correlation of wind shear to variations in angle of attack**



March 28, 2007



# **Correlation of wind shear to variations in angle of attack**





#### Outline

- Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)
- Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)
- Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)
- Control strategies to alleviate (Other)AM
- Conclusions

### Mitigation - Decreasing mean angle of attack

• HawcStab2 simulations with varying min pitch angle



### Mitigation - Decreasing angle of attack variations

DTU

 HAWC2 simulations with individual pitch control, sheared inflow exp=0.5, no turbulence



### Mitigation - Decreasing angle of attack variations

DTU

• Yaw misalignment



#### Outline

- Experimental noise source characterisation on a full scale rotor (DAN-AERO MW project)
- Relation between noise source and emitted far field sound (measurement in Virginia Tech Wind Tunnel)
- Critical atmospheric conditions to cause (Other)AM (DAN-AERO MW project)
- Control strategies to alleviate (Other)AM
- Conclusions

#### Conclusions

- Variation of the angle of attack during a revolution causes changes in the spectral energy of the noise sources on the blade
- Under normal conditions the variations of spectral energy are too small to lead to amplitude modulation far away from the turbine (NAM)
- If the blade undergoes transient stall the spectral energy in the low frequency range is significantly increased and it can lead to OAM
- Wind conditions leading to transient stall: high shear in combination with a mean wind speed close to rated wind speed
- Control strategies to mitigate OAM:
  - reducing the mean angle of attack (collective pitch)
  - reducing the angle of attack variations (individual pitch or yaw control)

#### References

- Oerlemans S. An explanation for enhanced amplitude modulation of wind turbine noise. In: Wind Turbine Amplitude Modulation: Research to Improve Understanding as to its Cause and Effect. RenewableUK, Dec. 2013.
- 2) Brooks TF, Pope DS, Marcolini MA. Airfoil Self-Noise and Prediction. NASA Reference Publication 1218, 1989.
- S. Moreau and M. Roger. Back-scattering correction and further extensions of Amiet's trailing-edge noise model. Part II: Application. J. of Sound and Vib. 323 (2009) 397–425
- H. A. Madsen et al. The DAN-AERO MW Experiments: Final report. Tech. Rep. Risoe-R-1726(EN), Risoe-DTU, Roskilde, Denmark, September 2010.
- 5) Roger M, Moreau S. Back-scattering correction and further extensions of Amiet's trailing-edge noise model. Part 1: theory. J. Sound Vib. 2005; 286:477–506.



### Thank you!



**DTU Wind Energy** Department of Wind Energy