

ROTOR EQUIVALENT WIND SPEED VALIDATION STUDY

Jared Kassebaum, PhD EDF Renewable Energy Power Curve Working Group Meeting Glasgow, Scotland, UK

EDF VALIDATION DATA SETS

Presentation will review validation efforts focused on two sites:

- Site 1: Central US, Lidar + Met power curve test
- Site 2: Southern US, Lidar + Met power curve test
- At present we are unable to make these data sets available as EDF does not maintain 100% ownership of the projects.

SITE 1: CENTRAL US

7 months of lidar data next to a power curve test setup

EDF RE Presentation Master Slides | 1/14/2014 | 3

SITE 1

Lidar sited next to permanent met tower and 2 operating turbines

- 7 months of concurrent measurements: May 2013 Nov 2013
- 7 lidar measurement heights across rotor swept area
- EDF compared the turbine production estimated from:
 - Observed hub height wind speed at permanent met tower
 - Adjusted hub height wind speed from REWS method

	T52	T53
Change in expected turbine production after applying REWS correction	0.0%	0.0%

SITE 2: SOUTHERN US

7 months of lidar data next to a power curve test setup

EDF RE Presentation Master Slides | 1/14/2014 | 5

SITE 2

Lidar sited next to permanent met tower and 2 operating turbines

- 7 months of concurrent measurements: May 2013 Nov 2013
- 10 lidar measurement heights across rotor swept area
- EDF compared the turbine production estimated from:
 - Observed hub height wind speed at permanent met tower
 - Adjusted hub height wind speed from REWS method

	T37	T38
Change in expected turbine production after applying REWS correction	-0.7%	-0.7%

MONTHLY SHEAR PROFILES

Why did REWS adjustment impact results at Site 2 but not Site 1?

REWS: AN IMPROVEMENT?

Is there evidence that the Rotor Equivalent Wind Speed method is an improvement over hub height wind speed measurements alone?

Modelled vs. Observed Production

POWER CURVE TESTS

- EDF performed internal power curve tests (PCT) at Site 1 and 2
- Independent engineers (IE) previously completed test at both sites
- Concurrent wind speed data collected at met towers and lidars
 - All required IEC filters were applied to data
 - Appropriate bins were filled
- Production data collected at neighboring turbines
 - Power data binned in 0.5 m/s bins
 - Data interpolated and extended when necessary
- Site specific frequency distributions from IE PCTs applied to:
 - Warranted power curve
 - Measured power curves

Power Curve Efficiency = Measured MWh / Warranted MWh

POWER CURVE LOSS: JUSTIFIED?

- Is the power curve loss applied by consultants reasonable?
- What can be said about IEC power curve test uncertainty?
- Do stand alone remote sensing devices offer accurate enough results for power curve tests?

	_/~				
Site	Officiai PCT	IE PC Loss	EDF PCT	PCT + REWS	Lidar only PCT
2	95.6%	97.3%	93.6%	93.6%	90.6%
	95.2%		93.2%	93.3%	90.3%
Test Dates:	02/2013 – 05/2013 05/		2013 – 11/2013		
1	100.1%	98.0%	98.4%	98.7%	95.6%
	-		98.3%	98.6%	95.8%
Test Dates:	12/2012 – 07/2013 05		/2013 – 11/20	13	
	~	2%			

CONCLUSIONS AND QUESTIONS

- With only a few new data points to draw from, it appears that REWS does make a positive improvement in our understanding of the energy produced by a turbine
 - But the improvement seems to fall well within the test uncertainty to begin with
- EDF was unable to present TI normalization results at this time
 - Hopefully after the current consensus analysis review
- What other ways can these methods can be quantifiably validated?

