Axel Albers

Rotor Equivalent Wind Speed: One Power Curve or Two?

Power Curve Working Group Meeting, Glasgow, 2013-12-04

Deutsche WindGuard, Oldenburger Straße 65, 26316 Varel Tel.: +49 4451-9515-0 – Internet: www.windguard.de

Contents

- Issues of AEP calculations in practice
- Treatment of wind speed definition for turbulence correction

• Former meetings: It seems that some turbine suppliers believe that it is sufficient to provide just one power curve.

RR 2 Results: Impact of Rotor Equivalent Wind Speed on AEP Calculations

Site	Exercise	SEP	SEP relative exercise 2.0]
[-]	[-]	[kWh]	[%]	
1	2.0	1569064	0.00	
1	2.1	1577124	0.51	
1	2.2	1569433	0.02	
1	2.3	1577493	0.54	
2	2.0	2473424	0.00	
2	2.1	2466090	-0.30	\leftarrow < 1% in AFP
2	2.2	2493317	0.80	
2	2.3	2485983	0.51	
3	2.0	953948	0.00	
3	2.1	949636	-0.45	<u> </u>
3	2.2	942217	-1.23	
3	2.3	937905	-1.68	

 If the impact of the wind speed definition on AEP-calculations is very low, it doesn't matter which power curve is applied.
 Then the provision of one power curve is sufficient!

- Site Conditions: high negative impact of shear or veer on power curve
- Wind turbine supplier provides only a power curve for rotor equivalent wind speed (or a power curve valid for a hub height wind speed combined with low or normal shear)
- Developer does not have measurements of rotor equivalent wind speed in place, or he or his consultant is not aware of the impact of shear and veer on power curves
- Consequence: Developer or his consultant apply power curve as provided by the turbine supplier with site specific wind speed at hub height for AEP-calculation

AEP will be overestimated!

Solutions

Solution 1:

- Wind turbine supplier provides only a power curve for rotor equivalent wind speed (or a power curve valid for a hub height wind speed and low or normal shear):
 - Give clear warning on possibility of negative impact of shear and veer!
 - Provide clear range of validity of power curve!
 - Encourage assessment of site specific rotor equivalent wind speed rather than hub height wind speed, or
 - encourage to adjust power curve to site specific shear and veer conditions using HH wind speed!

Solution 2:

• Wind turbine supplier provides site specific power curve for HH wind speed (and site specific turbulence and air density)

• Turbulence correction in case of wind resource assessment:

$$P_{\text{corrected}} = P_{\text{given}_{PC}}(v) - P_{\text{simulated}, \text{I-reference}}(v) + P_{\text{simulated}, \text{I-measured}}(v)$$

$$P_{\text{simulated}} = \int_{0}^{\infty} P_{I=0}(v) f(v) dv$$

- where f(v): Gaussian distribution determined by v and standard deviation of v within 10 minutes (σ_v)
 - $P_{I=0}$: zero turbulence power curve
- Which v and σ_v is to be used if the given PC refers to the rotor equivalent wind speed?
 - v and σ_v used in f(v) must match $P_{I=0}$
 - Don't apply $P_{I=0}$ referring to rotor equivalent wind speed with HH wind speed when integrating over the Gaussian distribution!

Case 1

- Given PC refers to:
 - rotor equivalent wind speed
 - a certain turbulence intensity I-ref
 - a certain air density, p-ref
- Consistent turbulence correction:
 - Derive zero turbulence power curve $\text{P}_{I=0}$ for rotor equivalent wind speed and for $\rho\text{-ref}$
 - Calculate I-measured from wind speed measurement at HH:

Case 2

- Given PC refers to:
 - HH wind speed
 - a certain turbulence intensity I-ref
 - a certain air density, p-ref
- Consistent turbulence correction:
 - Derive zero turbulence power curve $\text{P}_{I=0}$ for HH wind speed and for $\rho\text{-ref}$
 - Calculate I-measured from wind speed measurement at HH:

