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Introduction

I Objective:
I Quantitatively identify predominant wind conditions, or wind regimes, in a

given region and compare different regime identification methods.

I Background:
I Wind regimes have been used successfully to:

I Improve wind speed predictions (Gneiting et al. 2006)
I Generate synthetic wind speed data (Shamshad et al. 2005)
I Analyze a region’s wind power potential (Burlando et al. 2008)

I Methods for regime identification:
I are often difficult to generalize: subjective, depend on expert knowledge, or are based

on the optimization of a specific model
I utilize only basic clustering techniques: hierarchical and k-means

I Methods are not directly assessed for the ability to correctly classify observations, but
rather indirectly on:
I performance of a given forecasting model
I ability to replicate certain features in synthetic data

I Application:
I An more informed and objective wind regime identification process has the potential to:

I Inform the siting of wind farms
I Optimize turbine placement and specifications
I Improve wind energy forecasting and prediction

Data

I One year of wind data (Dec 2010-11) obtained from the Bonneville Power Administration for
twenty meteorological sites in the Pacific Northwest.

Meteorological Tower Locations

Variables:
I Barometric pressure (inHG)
I Relative humidity (%)
I Temperature (◦F)
I Wind direction (Deg)
I Wind speed (MPH)

Adjustments:

I Quality corrected

I Raw 5 and 10-min averages converted to
hour-ending averages

I Wind speeds adjusted to a standard height
of 70m agl using the power law

See http://transmission.bpa.gov/Business/Operations-/Wind/MetData.aspx for more information.

Defining Regimes

Tillamook September

Humidity: Low Humidity: High
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I Different sites generally exhibit two distinct wind behaviors
I Tillamook’s September dataset selected for differences in the distribution of wind speed and

wind direction
I R1: characterized by low humidity observations
I R2: characterized by high humidity observations

Synthetic Data Simulation

Model:
Goals in simulating data are to capture:

I distinct behaviors of the R1 and R2 datasets

I variable and temporal dependence characteristic of wind and atmospheric variables

To achieve these characteristics we use a diurnal-adjusted Markov-switching vector
autoregressive (MS-VAR) model:

yt − µrt(h) = Art(yt−1 − µrt−1(h − 1)) + ε(rt); ε(rt) ∼ N(0,Σrt),

I yt = (pressure, u, v)′

I {Rt} a Markov chain on finite space, {1, 2}, indicating the regime at time t.

I µrt(h) mean vector; a function of the hour h

I Art lag-one autoregressive matrix

I Σrt innovation covariance matrix

{µrt(h),Art ,Σrt} =

{
{µ1(h),A1,Σ1} if rt = 1
{µ2(h),A2,Σ2} if rt = 2

Parameter Values:

I Parameters are determined based on the observations classified within the R1 and R2 regimes.

I The regime-switching process, {Rt}, is defined by a transition probability matrix P = {pjk},
where pjk = P(rt+1 = k|rt = j); (j , k = 1, 2). In simulating data, observed proportions are
used to switch between regimes:

P =

( R1 R2

R1 0.92 0.08
R2 0.10 0.90

) I Expected proportion of time:
R1 = 0.55; R2 = 0.45

I Expected duration:
R1 = 12.3 hrs; R2 = 10.0 hrs

Simulation Scenarios
To better understand the performance of the regime identification methods tested, data is
simulated under four scenarios:

Scenario
Variable Observation

Constraints
Dependence Dependence

S1 Independent Independent diag(Σrt), Art=0,
pjk = 0.50 ∀j , k

S2 Independent Dependent: diag(Σrt),
AR(1) diag(Art)

S3 Dependent Independent Art=0,
pjk = 0.50 ∀j , k

S4 Dependent Dependent:
None

VAR(1)

For more information, email kkazor@mines.edu

Regime Identification Methods

We consider the following five methods for identifying wind regimes:

1. Switching algorithm based on the wind direction (Directional)

2. K -means clustering
3–4. Gaussian mixture model-based (GMM) clustering

3. constrained covariance matrix, GMM(Λk)
4. unconstrained covariance matrix, GMM(Σk)

5. Nonparametric mixture model-based (NPMM) clustering

Mixture Models
The k-means, GMM, and NPMM methods are forms of model-based clustering that involve
fitting finite mixture models:

I Assume the random variable X ∈ Rd is generated from K distinct random processes or
regimes

I Regimes are each modeled by a density, fk(x|θk)

I Parameters τk represent the proportion of observations generated under the k th regime

f (x|Θ) =
K∑

k=1

τkfk(x|θk),

where Θ = (τ1, ..., τK ;θ1, ....θK) is the set of parameters.

GMM and k-means
Involve fitting a mixture of K multivariate Gaussian distributions with different covariance
structures:

fk(x|θk) = N(µ,Σk)
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Unconstrained Σk

NPMM
Rather than assume a specific structure for all regimes, we also consider the use of
nonparametric kernel densities.

To fit an NPMM, we use the npEM algorithm developed by Benaglia et al. (2009).

I Although observations may be multivariate, variables are assumed to be independently
distributed within each regime.

f (x|Θ) =
K∑

k=1

τkgk(x) =
K∑

k=1

τk

d∏
j=1

fjk(xj),

where Θ′ = (τ ′, g′) = (τ1, ..., τK ; g1, ..., gK)′ denotes the parameter vector, and fjk(·) denotes
the nonparametric univariate density of the j th variable under the k th regime.

Simulation Outline

1. Generate 500 datasets each of length 2,000 (one season) under each of the four scenarios:
S1–S4.

2. Given the number of regimes, K = 2, methods are applied to non-detrended simulated data
and average misclassification rates across the 500 datasets are computed under each scenario
and for each method.

3. The GMM(Λk) and GMM(Σk) methods are tested for their ability to determine the correct
number of regimes using BIC.

Simulation Results: Misclassification Rates
Average Misclassification Percentage (%) when Average Misclassification Percentage (%)

applied to Pressure and the U and V wind components when applied to the U and V wind components
Scenario: S1 S2 S3 S4 S1 S2 S3 S4

[Var/Obs]: [Ind/Ind] [Ind/Dep] [Dep/Ind] [Dep/Dep] [Ind/Ind] [Ind/Dep] [Dep/Ind] [Dep/Dep]

Directional
37.95 39.99 37.98 40.12 37.95 39.99 37.98 40.12

(0.0482) (0.0856) (0.0459) (0.0898) (0.0482) (0.0856) (0.0459) (0.0898)

k-means
35.70 39.10 35.19 39.02 35.70 39.10 35.18 39.02

(0.0626) (0.1130) (0.0597) (0.1210) (0.0628) (0.1130) (0.0598) (0.1209)

NPMM
31.35 37.20 35.05 40.15 33.33 37.70 34.12 38.26

(0.1137) (0.1310) (0.0638) (0.1720) (0.0547) (0.1177) (0.0483) (0.1135)

GMM(Λk)
25.91 38.91 38.03 41.90 29.10 39.08 35.09 41.47

(0.3583) (0.3052) (0.1318) (0.1452) (0.2593) (0.2586) (0.2386) (0.1528)

GMM(Σk)
21.30 30.68 22.38 31.88 25.35 31.60 26.60 32.65

(0.1896) (0.3421) (0.2670) (0.3529) (0.1818) (0.2700) (0.2144) (0.2643)

Simulation Results: Number of Regimes

Pressure and the U and V wind components
Scenario Number of Regimes (K )

[Variable/Observation] 1 2 3 4 5 6 7

GMM(Λk)

S1 [Ind,Ind] 0.00 0.80 97.00 2.20 0.00 0.00 0.00
S2 [Ind,Dep] 0.00 0.80 83.40 11.60 3.40 0.60 0.20
S3 [Dep,Ind] 0.00 0.00 92.00 7.00 1.00 0.00 0.00
S4 [Dep,Dep] 0.00 0.00 55.20 22.00 15.60 5.80 1.40

GMM(Σk)

S1 [Ind,Ind] 0.00 94.40 5.60 0.00 0.00 0.00 0.00
S2 [Ind,Dep] 0.00 67.60 27.80 4.00 0.60 0.00 0.00
S3 [Dep,Ind] 0.00 85.80 14.20 0.00 0.00 0.00 0.00
S4 [Dep,Dep] 0.00 61.20 33.20 4.60 0.80 0.20 0.00

U and V wind components
Scenario Number of Regimes (K )

[Variable/Observation] 1 2 3 4 5 6 7

GMM(Λk)

S1 [Ind,Ind] 0.00 0.60 98.60 0.80 0.00 0.00 0.00
S2 [Ind,Dep] 0.00 6.00 93.40 0.60 0.00 0.00 0.00
S3 [Dep,Ind] 0.00 0.00 99.60 0.40 0.00 0.00 0.00
S4 [Dep,Dep] 0.00 0.40 97.60 2.00 0.00 0.00 0.00

GMM(Σk)

S1 [Ind,Ind] 0.00 92.80 7.20 0.00 0.00 0.00 0.00
S2 [Ind,Dep] 0.00 83.60 16.40 0.00 0.00 0.00 0.00
S3 [Dep,Ind] 0.00 89.60 10.40 0.00 0.00 0.00 0.00
S4 [Dep,Dep] 0.20 84.80 15.00 0.00 0.00 0.00 0.00

Simulation Results
Results point to GMM(Σk) as the best method for identifying wind regimes out of the five
methods considered:

I lowest average misclassification rates

I frequent identification of correct number of regimes, though sometimes chooses more or less
regimes than strictly necessary
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Simulation Results: Misclassification Rates
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Directional Classification (error rate = 42.4%)
Regime: 1 Regime: 2
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GMM(Λk) Classification (error rate = 40.65%)
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Identifying Regimes

Apply the GMM(Σk) method to non-detrended observed data to identify both regional and
local wind regimes

I Regional: average the hourly u and v components at each time across all locations

I Local: apply to the u and v components observed at each location

Regional Regimes
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Regime % in Each Speed Direction Cardinal
Regime Mean SD Mean SD Direction

Winter
W1 17.46 2.11 1.25 179 0.92 S
W2 20.79 6.64 6.10 268 0.93 W
W3 25.80 7.11 2.16 223 0.45 SW
W4 11.99 7.24 2.18 77 0.19 E
W5 7.54 7.77 1.27 119 0.30 SE
W6 5.29 13.08 3.35 189 0.42 S
W7 11.14 13.96 2.59 223 0.15 SW

Spring
Sp1 25.58 1.37 3.00 86 1.74 E
Sp2 20.07 8.79 1.82 271 0.16 W
Sp3 18.55 9.86 1.78 237 0.20 SW
Sp4 35.80 11.46 3.47 262 0.33 W

Summer
Su1 40.69 4.08 2.48 300 0.80 NW
Su2 7.98 4.95 1.50 39 0.37 NE
Su3 37.15 9.17 2.47 270 0.16 W
Su4 14.18 9.98 3.20 254 0.24 W

Fall
F1 38.58 3.12 2.57 94 0.86 E
F2 51.45 6.14 4.45 247 0.54 SW
F3 6.79 6.34 2.59 294 0.16 NW
F4 3.18 13.83 4.92 207 0.23 SW

Local Regimes

Local information is helpful in siting new wind farms or local forecasting
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I West-east flows along the gorge

I Diversity in regime direction at sites further
from the gorge

I East of the Cascades: strong easterly winds
in winter and fall (TRO and BID)

I West of the Cascades: strong westerly winds
in spring and summer

Case Study

In building a fully space-time model of wind for utility system planning, a common difficulty is
characterizing space-time dependencies since spatial dependence among locations changes
with the wind speed and wind direction.

Case study: Use regimes to distinguish between different correlation structures

I Specifically, examine changes in the correlation of the lagged wind speeds at neighboring sites
and the current wind speeds at a prediction site depending on whether the neighbor is
predominantly upwind or downwind in a given regime.

Prediction site: Chinook Regional Regimes Local Regimes

Neighbors
Overall Upwind Downwind Upwind Downwind

t − 1 t − 2 t − 1 t − 2 t − 1 t − 2 t − 1 t − 2 t − 1 t − 2
Shaniko 0.32 0.34 0.35 0.38 0.28 0.29 0.35 0.37 0.24 0.28
Wasco 0.56 0.57 0.54 0.56 0.47 0.45 0.58 0.59 0.32 0.30
Goodnoe Hills 0.78 0.78 0.76 0.76 0.42 0.41 0.79 0.79 0.37 0.35
Roosevelt 0.82 0.81 0.81 0.80 0.41 0.37 0.83 0.82 0.23 0.25
Sunnyside 0.42 0.41 0.49 0.47 0.37 0.39 0.31 0.30 0.37 0.35
Horse Heaven 0.80 0.77 0.80 0.77 0.68 0.62 0.87 0.82 0.71 0.68
Kennewick 0.62 0.62 0.36 0.33 0.58 0.57 0.38 0.33 0.62 0.61
Butler Grade 0.70 0.67 0.33 0.30 0.66 0.63 0.12 0.20 0.70 0.68

BUT
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HOR

ROO

SHA

SUN

GDH

KEN

CNK

Downwind

Upwind

I Correlations with sites to the west are
stronger when neighbors are upwind

I Correlations with sites to the east are
stronger when neighbors are downwind

I Correlations with Roosevelt are much
weaker when Roosevelt is downwind

Conclusions

I The GMM(Σk) method performs the best out of the five methods considered
in the simulation analysis.

I Regimes identified by applying GMM(Σk) to regional and local data are
consistent with known wind patterns in this region.

I Correlations can be considerably different when restricting computations to
observations falling within a set of regimes.

I Regimes may provide a better understanding of the spatial dependence
among neighboring sites under different sets of wind conditions.
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