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Introduction

» Objective:
- Quantitatively identify predominant wind conditions, or wind regimes, in a
given region and compare different regime identification methods.

Simulation Results: Misclassification Rates

Regime ldentification Methods

We consider the following five methods for identifying wind regimes:

Directional Classification (error rate = 42.4%)

K-means Classification (error rate = 41.5%)
Regime: 1 Regime: 2 i ime:
B B

Regime: 1 Regime: 2

1. Switching algorithm based on the wind direction (Directional) S4 Simulated Data

------------

2. K-means clustering
3—4. Gaussian mixture model-based (GMM) clustering R |
3. constrained covariance matrix, GMM/(/A\,) e
4. unconstrained covariance matrix, GMM /() W7

» Background:
» Wind regimes have been used successfully to:
» Improve wind speed predictions (Gneiting et al. 2006)
» Generate synthetic wind speed data (Shamshad et al. 2005)
> Analyze a region's wind power potential (Burlando et al. 2008)

» Methods for regime identification:
» are often difficult to generalize: subjective, depend on expert knowledge, or are based
on the optimization of a specific model
» utilize only basic clustering techniques: hierarchical and k-means
» Methods are not directly assessed for the ability to correctly classify observations, but
rather indirectly on:
» performance of a given forecasting model
» ability to replicate certain features in synthetic data

5. Nonparametric mixture model-based (NPMM) clustering

Mixture Models

The k-means, GMM, and NPMM methods are forms of model-based clustering that involve
fitting finite mixture models:

» Assume the random variable X € RY is generated from K distinct random processes or
regimes

» Regimes are each modeled by a density, f(x|0y)

» Application:
» An more informed and objective wind regime identification process has the potential to:

» Parameters 7, represent the proportion of observations generated under the k" regime o e

» Inform the siting of wind farms
» Optimize turbine placement and specifications
» Improve wind energy forecasting and prediction

» One year of wind data (Dec 2010-11) obtained from the Bonneville Power Administration for
twenty meteorological sites in the Pacific Northwest.

Identifying Regimes

Apply the GMM(X,) method to non-detrended observed data to identify both regional and
local wind regimes

F(x[0©) = > 7ufi(x]6x),

where © = (74, ..., 7x; 01, ....0k) is the set of parameters.

» Regional: average the hourly u and v components at each time across all locations

GMM and k-means
Involve fitting a mixture of K multivariate Gaussian distributions with different covariance
structures:

» Local: apply to the v and v components observed at each location

fi(x|0k) = N(p, Zy) Regional Regimes

Meteorological Tower Locations
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where ©' = (7', 8") = (71, ..., Tk; &1, ..., k) denotes the parameter vector, and fi(-) denotes

o . : . . Local Regimes
the nonparametric univariate density of the j% variable under the k™ regime. 5

Tillamook September Local information is helpful in siting new wind farms or local forecasting
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3. The GMM(Ax) and GMM(Xx) methods are tested for their ability to determine the correct
number of regimes using BIC.

» Different sites generally exhibit two distinct wind behaviors

» Tillamook's September dataset selected for differences in the distribution of wind speed and
wind direction
» R1: characterized by low humidity observations
» R2: characterized by high humidity observations

In building a fully space-time model of wind for utility system planning, a common difficulty is

Simulation Results: Misclassification Rates

Average Misclassification Percentage (%) when Average Misclassification Percentage (%) characterizing space-time dependencies since spatial dependence among locations changes
applied to Pressure and the U and V wind components when applied to the U and V wind components with the wind speed and wind direction.
- - - Scenario: S1 S2 S3 S4 S1 S2 S3 S4
SynthEt|C Data SlmUIatlon [Var/Obs]: [|g;|/9|2d] [|r;dg/9DgeP] [D3e7pé:3nd] [ng/lgepl [|§;1/9|2d] [|r;<;/£%epl [D367Pé:3nd] [ng/lgep] Case study: Use regimes to distinguish between different correlation structures
Model: Directional | 0482)  (0.0856)  (0.0459) (0.0898) (0.0482) (0.0856) (0.0450) (0.0898) » Specifically, examine changes in the correlation of the lagged wind speeds at neighboring sites
L : L 35.70 39.10 35.19 39.02 35.70 39.10 35.18 39.02 and the current wind speeds at a prediction site depending on whether the neighbor is
Goals in simulating data are to capture: "means | 0.0626)  (0.1130)  (0.0597)  (0.1210) (0.0628)  (0.1130)  (0.0598) (0.1209) dominant] 4 or downwind in a eiven regime
> distinct behaviors of the R1 and R? datasets wenny | 3135 37.20 35.05 40.15 33.33 37.70 34.12 38.26 predominantly tpwi whwind in a given regime.
0.1137 0.1310 0.0638 0.1720 0.0547 0.1177 0.0483 0.1135 S . . : .
» variable and temporal dependence characteristic of wind and atmospheric variables CMMIA (25-91) (38_91) (38_03) (41.90) (29.10) (39.08) (35.09) (41.47) Prediction site: Chinook Re_g'0”3| Reg'mes_ |—_0C3| Regimes |
(M) (03583)  (03052)  (01318)  (0.1452) | (0.2503)  (0.2586)  (0.2386) (0.1528) Neighbors Overall Upwind | Downwind | Upwind | Downwind
To achieve these characteristics we use a diurnal-adjusted Markov-switching vector amm(s,) 2130 30.68 22.38 31.88 25.35 31.60 26.60 32.65 t—1t—-2/t—-1t—-2t—-1t-2/t—1t—-2{t—-11t-2
autoregressive (\VIS-VAR) model: 1 (0.1896)  (0.3421)  (0.2670) (0.3529) (0.1818) (0.2700) (0.2144) (0.2643) Shaniko 032 034 035 038 028 0.29| 0.35 037 0.24 0.28
Wasco 0.56 0.57| 054 056 047 045 058 059 0.32 0.30
Y, — tr(h) = A (Yeo1 — por, (h—1)) + €(rt);  €(re) ~ N(O,X,), . : _ : Goodnoe Hills| 0.78 0.78 0.76 0.76| 0.42 0.41 079 079 0.37 0.35
t ( ) t 1 t t SlmUIatlon ReSUIts' Number Of Reglmes Roosevelt 0.82 081| 0.81 080 0.41 0.37] 083 0.82 0.23 0.25
>y = (pressure, u, v)' Sunnyside 0.42 041 049 047 037 039 031 030 037 035
» {R:} a Markov chain on finite space, {1, 2}, indicating the regime at time t. Pressure and the U and V wind components Horse H_eave” 080 077 0.80 0.77] 068 062 0.87 0.82) 0.71 0.68
> 1, (h) mean vector; a function of the hour h Scenario Number of Regimes (K) Kennewick 0.620.621 0.36 0.33) 058 057 038 033 062 0.61
' : : : : Butler Grade | 0.70 0.67| 0.33 0.30 066 0.63| 0.12 0.20| 0.70 0.68
» A, lag-one autoregressive matrix [Variable/Observation] 1 2 3 4 5 6 7
» ¥, innovation covariance matrix S1 [Ind,Ind] 0.00 0.80 97.00 2.20 0.00 0.00 0.00
t . S2 [Ind,Dep] 0.00 0.80 83.40 11.60 3.40 0.60 0.20 Downwind » Correlations with sites to the west are
h A Z f — ]. SUN
{pr(h), A, 2Z,.} = { ?/jlgh;’Ah 21{ :f :t _ > GMM(A) S3 [Dep,Ind] 0.00 0.00 92.00 7.00 1.00 0.00 0.00 N o stronger when neighbors are upwind
borameter Values. ATy e "‘ S4 [Dep,Dep] 0.00 0.00 55.20 22.00 15.60 5.80 1.40 N7 . Correlations with sites to the cact are
P d | . d b d h b . I f d . h h R]_ d R2 . S]- [Ind,lnd] OOO 94.40 560 OOO OOO OOO OOO DAg CNK\\\ Stronger When nelghbors are downwind
> aramet.ers are. et.ermlne ase ont. eo .servatlons C as.5|.|e wit |n.t. e a.n regimes. GI\/IM(Zk) S2 [Ind,Dep] 0.00 67.60 27.80 4.00 0.60 0.00 0.00 N Upwind . . Correlations with Roosevelt are much
» The regime-switching process, {R;}, is defined by a transition probability matrix P = {pj}, S3 [Dep,Ind] 0.00 85.80 14.20 0.00 0.00 0.00 0.00 : er when R It :
N : . : weaker when Roosevelt is downwind
where pjx = P(riy1 = k|re = j); (j, k = 1,2). In simulating data, observed proportions are S4 [Dep,Dep] 0.00 61.20 3320 4.60 0.80 0.20 0.00
used to switch between regimes:
U and V wind components o
R1 R? » Expected proportion of time: Scenario Number of Regimes (K) COnC|USIOnS
p_ R1/092 008 R1 = 0.55; R2 = 0.45 [Variable/Observation] 1| 2 3 4 5 6 7T |
~ R2\0.10 0.90 > Expected duration: S1 [Ind,Ind] 0.00 0.60 98.60 0.80 0.00 0.00 0.00 » The GMM(X ;) method performs the best out of the five methods considered
R1 = 12.3 hrs; R2 = 10.0 hrs GMM(A,) S2 [Ind,Dep] 0.00 6.00 93.40 0.60 0.00 0.00 0.00 in the simulation analysis.
S3 [Dep,Ind] 0.00 0.00 99.60 0.40 0.00 0.00 0.00 . . . . .
Imulation Scenarios S1 [Ind,Ind] 000 92.80 720 000 000 0.00 000 consistent with known wind patterns in this region.
To better understand the performance of the regime identification methods tested, data is GMM(Z,) 52 [Ind, Dep] 0.00 83.60 16.40 0.00 0.00 0.00 0.00 » Correlations can be considerably different when restricting computations to
simulated under four scenarios: S3 [Dep,Ind] 0.00 89.60 10.40 0.00 0.00 0.00 0.00 b . el b : .
aREe HIEET TORT SEenaros S4 [Dep,Dep] | 0.20 84.80 15.00 0.00 0.00 0.00 0.00 observations talling within a set of regimes.
. Variable Observation _ » Regimes may prf)wde. a better un.derstandlng of the spatla.l .dependence
Scenario Constraints " - among neighboring sites under different sets of wind conditions.
Dependence | Dependence Simulation Results
S1 Independent Independent | diag(X,), A,=0,
P P g( 8)50 \;f P Results point to GMM(Z,) as the best method for identifying wind regimes out of the five References
Pjk — V. J> methods considered:
S2 Independent Dependent: diag(Z,t), _ o » Benaglia, T., Chauveau, D., and Hunter, D. R. (2009) “An EM-like algorithm for semi- and
AR(]_) diag(A, ) > lowest average misclassification rates non-parametric estimation in multivariate mixtures,” Journal of Computational and Graphical
t i .
S3 Dependent |ndependent A =0 » frequent identification of correct number of regimes, though sometimes chooses more or less Statistics, 18: 505-526.
o = regimes than strictly necessary » Burlando, M., Antonelli, M., and Ratto, C. F. (2008) “Mesoscale wind climate analysis:
Pjk = 0.50 \V/Ja k |dentification of anemological regions and wind regimes,” International Journal of
54 Dependent Dependent: N Simulated Directional K-means NPMM GMM(Ay) GMM(Zy) Climatology, 28: 629-641.
VAR(]_) one rate = 42.4%) rate = 41.5%) (ate = 39.2%) (ate = 40.65%) rate = 24.3%) » Gneiting, T., Larson, K., Westrick, K., Genton, M. G., and Aldrich, E. (2006) “Calibrated

probabilistic forecasting at the stateline wind energy center: The regime-switching space-time
method,” Journal of the American Statistical Association, 101: 968-979.
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