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Introduction

Motivation

An increasing part of electricity supply is generated by wind
@ Wind power cover about 29% of total system load

@ Renewables should cover 50% in 2020 and 100% of total system load
in 2035

With the large penetration of wind accurate forecasts (including
uncertainties) are needed on all timescales

@ minutes - few hour: efficient and safe regulation
@ 12-36 hour: efficient trading on NordPool
@ days: optimal regulation of large CHP

We focus on horizons from 1-48 hours.
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Methods in use

Adaptive time series model, using MET-forecast (e.g. WPPT)
Regime models (SETAR, STAR, MSAR)

Spatio-temporal models

Combining several MET-forecast

Corrected MET ensembles (uncertainty)

Time-adaptive quantile regression (uncertainty)

e 6 © ¢ ¢ ¢ ¢

Scenario based forecasting (dependence structure by correlation matrix
or copula)

@ Stochastic differential equations

Most methods are implemented in Wind Power Prediction Tool (WPPT).
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Introduction

WPPT point-forecast

WPPT provide a point forecast

Na
Ditklt = Z aipt—i + bﬁfth(MET) + f(higr)
i=0

where p; is observed power production, k € [1;48) prediction horizon,
~pC

t+k|t(MET) is a power curve prediction and h; .y is time of day.

@ Parameters are estimated adaptively

@ WPPT is one af the most widely used forecasting tools for windpower
(worldwide)

@ WPPT point forecasts are used as input to SDE-models
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Data

The data set cover the period from January 1. 2001 to May 2. 2003.

@ Hourly measurements of actual power production

@ 48 hour point-forecast of power production (issued at 00h, 06h, 12h,
18h)

@ Only sets where all point forecasts and all measurements are
non-missing are used in this analysis (2593 complete sets in total)

@ 150 sets are used to train the SDE models
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Correlation
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BM 3 - standard deviation and correlation
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SDE-models

Scope

The scope of the SDE-modelling is to generate covariance structures based
on SDE formulations.

Given the (continuous time) SDE-formulation
dxy = f(xe, ut, 0)dt + o(zg, ur, 0)dwy;  xo given

and the (discrete time) observation equation

p=h(z,u,0) + e; e~ N(0,S)
where
e p € [0,1]*8 is observed power

o = ={xy,...,248|m0} € [0,1]*8, is the state vector
@ wuy is some input (here predicted power)
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A SDE-formulation for error propagation

The starting point (the Pearson/logistic diffusion)

dry =—0 - (v — p)dt + v/20az; - (1 — xy)dwy,
with € (0,1), a < min(u,1 — p).
@ 1 € (0, 1)

o Diffusion (variance) small when x; is close to 0 or 1.

@ Long term average equal

@ Stationary distribution is a beta distribution (with parameters £ and

1_
=)

@ Interdependence structure controlled by 6
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SDE-models

Basic models

The second order moment representation can be solved for a € (0,2), and
we choose

dry =—0 - (z; — p— (1 — 2x))dt + 2+/az; - (1 — x)dwy,
with the observation equation given by
y=x+e e~ N(0,S),
where

® (1= Pyjo (mean)
® a = apyo,i(1 — Pyo;) with o € (0, 1) (variance)
® v = cPyo,i(1 — Pyjo,i) with c € Ry (bias)
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Results

df I(train) p-value I(testl) I(test2) (test)
BM2 7 8393 88690 67777 156467
BM3 12 8419 < 0.0001 88692 67853 156546
SDEO 3 84084 92376 69222 161598
SDE1 4 85324 <0.0001 94292 70719 165011

SDEQO : No bias
SDE1 : Including bias
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Models

Model of increasing complexity are analysed, s is (an estimated constant)
in all models. Non-linear relations are explored by

A B 1

Oé(ptm? t) 1 4 €.Tp(_a0 — fa(ﬁt\O) - ga(t))
A~ _ Kg

0(Dyot) = 14 exp(—bo — fo(Pyo) — 96(t))
A KC

c(pt\07t)

"1+ exp(—co — fe(Bryo) — 9¢(t))

the non-linear functions in f and g are modelled by natural cubic splines.
Ky and K. are used to control the range of ¢ and 6, we use
(Ko = K. = 20).
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Time varying parameters
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Ensemble forecasts
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Time varying parameters
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Time varying parameters
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Wind Speed Models

A SDE model for wind speed variability.

We start out with a simple SDE model. Instead of predicted power output,
the numerical weather prediction (NWP) is used:

d(L’t =—0- (a;t — NWPt)dt +o- %;y . dwt.

As there is not physical upper bound for the wind speed as opposed to
wind power, we choose the diffusion term g(x,t) = o - 7.
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Predictive Density, 1h & 5h
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Wind Speed Models

Introducing the derivative of the prediction

We now introduce the derivative of the NWP with respect to time, NWP,
to the model:

drz; =(—01 - (z; — NWP;) + 60y - (1 — e~ ) - NWP)dt + o - ] - dwy.

Here we have introduced the term (1 — e™**) for the model to remain
feasible, as it makes sure that the process remains in R, as the influence
of NWP drops to zero when x; approaches zero.
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Predictive Density, 1h & 5h
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Summary and conclusion

Summary and conclusion

@ We model wind power production as multivariate Gaussian (possibly
after some transformation), and focus on the covariance structure

@ SDEs are used to generate very flexible covariance structures
@ The SDEs model quite complex covariance structures

@ Ensemble forecast and prediction densities (and intervals) are easily
obtained from SDE's

@ Introducing the derivative of NWP w.r.t. time, gave large
improvements in terms of predictive densities and time lags.
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