Data integrity(*):
Prerequisite to Real World Power Curves

(*)integrity:
1. data’s consistency and freedom for corruption
2. the state of being whole or entire

Ioannis Antoniou (RO),
Peder Enevoldsen (RO),
Soren O. Lind (CTA)
Challenges associated with power curve measurements:
 – Anemometer calibration
 – Data integrity of siting measurements
 – Data integrity of power curve measurements
Anemometer calibration challenges

- SWP acknowledges the need for improvements of the anemometer calibrations in order to lower the inter-calibration differences and uncertainties between wind tunnels.
- SWP encourages that the allowable inter-tunnel acceptance range is (at least) halved relative to the present limit (from present 1% to 0.5%).

RR of 20 anemometers in three wind tunnels

<table>
<thead>
<tr>
<th>MAWS=8m/s</th>
<th>T1/T3 (%)</th>
<th>T2/T3 (%)</th>
<th>T2/T1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>101.90</td>
<td>102.00</td>
<td>100.10</td>
</tr>
<tr>
<td>Max.</td>
<td>102.30</td>
<td>102.30</td>
<td>100.30</td>
</tr>
<tr>
<td>Min.</td>
<td>101.50</td>
<td>101.40</td>
<td>99.60</td>
</tr>
</tbody>
</table>

Comparison at 150Hz

Vector/Risø ratio vs. wind speed
Siting measurements

• **Problem:**
 – Incomplete pre-construction measurement campaigns with focus diverted from data integrity
 – Too little attention to other parameters than wind speed distribution

• **Solution: The siting departments wish list**
 – Documentation of the measurement campaign:
 • Mast layout
 • Boom orientation
 • Sensor calibration (cup, wind-vanes
 • Mast shadow influence and eventual corrections of the data
 • Atmospheric temperature, pressure, humidity
 – Measurements at hub height (avoid extrapolation from lower heights)
 – Wind speed and wind direction measurements at more heights (to determine the local shear and veer)
 – High frequency measurement campaigns of wind speeds, not just 10min statistics (to identify frequencies which may influence the turbine structure)
 – Even better: Combine use of met masts with remote sensing to measure the wind profile above hub height
Power curve measurements

- Data integrity jeopardized by:
 - Increasingly complex terrain locations
 - High hub height (new uncertainty source)
 - Large rotors (new uncertainty source)
 - Available measurement codes and practices not sufficiently precise to cope with the new challenges (hub height wind speed does not reflect the reality over the whole rotor)
 - The energy equivalent wind speed over the rotor needs from now on to be considered as the alternative to the hub height wind speed

AEP = 100% <100% >100%
Meeting the needs of the customer: **Site specific PC**

- Knowledge of the local conditions makes it possible to meet the customer’s economic considerations and offer site-specific power curves.
- Data integrity is a must.

- A realistic approach combines:
 - The turbine’s generic power curve
 - Site specific information (wind shear-veer profile, wind-rose and TI distribution, local topography)
 - Flow simulations
 - Experience from previous measurement campaigns in similar terrain

- The output:
 - A state-of-the-art site-specific power curve!
Conclusions

• Due to the large rotor evolution:
• The hub-height wind characteristics are not any longer always representative of the wind speed over the whole rotor and a new IEC revision 61400-12-1 is needed in order to incorporate the new measurement procedures
• New uncertainty sources (due to wind shear and veer over the rotor) need to be considered, additionally to the already existing ones
• Data integrity during the siting period is fundamental for being able to offer realistic power curves to the customer.
Additional info: Wind profile vs. hub height wind speed

\[V = \frac{3}{A} \int_{H-R}^{H+R} \left(v(z) \cos(\varphi(z)) \right)^3 dA \]
Question:

Does the turbine produce better during low shear, low veer and higher TI conditions?

OR:

Has our filtering, modified the energy contents of the wind profile? (without our measurement method being able to register it!)