Stability classification for CFD simulations in complex terrain

EWEA Technology Workshop: Resource Assessment 2013

Di Li a
Dr. Carolin Schmitt b
Dr. Cathérine Meißner a
Andrea Vignaroli a

a WindSim AS, Fjordgaten 15, N-3125 Tønsberg, Norway
b juwi Wind GmbH, Energie-Allee 1, 55286 Wörrstadt, Germany
Outline

• General Aspects of Atmospheric Stability

• Effects of Stability on Wind Fields – Theory, Measurements and Modelling

• Stability Parameters in Measurement and MERRA Data

• Examples from Different Sites

• CFD Modelling Capabilities

• Conclusions and Outlook
General Aspects of Atmospheric Stability

- Atmospheric Stability
 - Resistance of the atmosphere to vertical motion depend on different stratification parameters

- Application and Importance for Wind Energy
 - Site suitability and power curve performance
 - Vertical, Horizontal
 - Energy yield

- Integration in CFD Modelling

Simulations doesn’t fit measurements

Elevation

Roughness

Stratification

EWEA Technology Workshop: Resource Assessment 2013
Effects of Stability on Wind Fields

Neutral case
\[\bar{u}(z) = \frac{u_s}{\kappa} \ln \left(\frac{z}{z_0} \right) \]

Non-neutral case
\[\bar{u}(z) = \frac{u_s}{\kappa} \left[\ln \left(\frac{z}{z_0} \right) - \Psi_m \left(\frac{z}{L} \right) \right] \]

Vertical wind profiles: Theory

Vertical wind profiles: Measurements
Effects of Stability on Wind Fields

Stratification: Theory

- Stable
- Neutral
- Unstable

Streamlines, neutral (left) and stable (right) stratification

Vertical speed, neutral (left) and stable (right) stratification

Stratification: Modelling
Stability Parameters in Measurement and MERRA Data

• Challenges
 • Reality vs Equation
 • Captured by measurement
 • Model methods and parameters

• Atmospheric Stability Model Methods
 • Temperature Gradient
 • Richardson
 • MOL (Monin–Obukhov Length)
 • Pasquill Classes
 • ...
Stability Parameters in Measurement and MERRA Data

Measurement Limitations:

• Met tower
 • No flux measurement
 • Sensor accuracy/mounting for gradient method
 • Short period not representative

• LIDAR
 • No temperature gradient measured
 • Short period not representative
 • Approaches like Pasquill not yet validated
Stability Parameters in Measurement and MERRA Data

• MERRA Data Possibilities
 • Available for free
 • MOL can be calculated

L = \(-u^3 \cdot T_{v_{1m}} \cdot cp \cdot \rho_0 / (k \cdot g \cdot shfl)\)

• MERRA Data Challenges
 • Four surrounding MERRA data points
 • Could be far away

Examples from different Sites

All sites with one or more met towers, A and B also with LIDAR measurements

Site A - Complex, forest

Site B - Medium, no forest

Site C - Flat, forest

Site D - Complex, coastal, no forest
Site A – Stability Distribution

Stability Classifications for Monthly Distribution

Measurement Data

MERRA Data

- Similar average ratio of stable cases over the year
- Ratio neutral/instable depends on classification scheme
- Monthly variability smoothed by MERRA
Site A – Quality

Over estimated unstable
Under estimated stable

<table>
<thead>
<tr>
<th></th>
<th>Speed</th>
<th>Dir</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ hour</td>
<td>0.62</td>
<td>0.45</td>
<td>0.98</td>
</tr>
<tr>
<td>ρ day</td>
<td>0.83</td>
<td>0.46</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Good correlation of speed and temperature

Stable directions
Site B – Stability Distribution and Quality

Mast Pasquill

- Measurement Data

MERRA Mo1

- MERRA Data

Frequency of Stability Classes

- Mast Gradient vs MERRA Gradient/MOL

<table>
<thead>
<tr>
<th></th>
<th>Speed</th>
<th>Dir</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ hour</td>
<td>0.69</td>
<td>0.31</td>
<td>0.98</td>
</tr>
<tr>
<td>ρ day</td>
<td>0.89</td>
<td>0.34</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Site C – Stability Distribution and Quality

Measurement Data

- Mast Gradient
- Frequency of Stability Classes

MERRA Data

- Mast MOL vs MERRA MOL at stable

<table>
<thead>
<tr>
<th></th>
<th>Speed</th>
<th>Dir</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ hour</td>
<td>0.63</td>
<td>0.44</td>
<td>0.96</td>
</tr>
<tr>
<td>ρ day</td>
<td>0.79</td>
<td>0.67</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Site D – Stability Distribution and Quality

Measurement Data

MERRA Data

<table>
<thead>
<tr>
<th></th>
<th>Speed</th>
<th>Dir</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ hour</td>
<td>0.70</td>
<td>0.44</td>
<td>0.89</td>
</tr>
<tr>
<td>ρ day</td>
<td>0.83</td>
<td>0.53</td>
<td>0.96</td>
</tr>
</tbody>
</table>

- Over estimated instable
- Under estimated stable
Comparison Temperature Cycle C and D

Site C - Flat, forest

Site D - Complex, coastal, no forest

• Land/sea surface distribution
All Sites – longterm MERRA MOL

MOL stability values and distribution (sector-wise) in CFD model setup

Site A - Complex, forest

Site B - Medium, no forest

Site C - Flat, forest

Site D - Complex, coastal, no forest

<table>
<thead>
<tr>
<th>MOL</th>
<th>I</th>
<th>N</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-113</td>
<td>500</td>
<td>132</td>
</tr>
<tr>
<td>B</td>
<td>-95</td>
<td>-700</td>
<td>119</td>
</tr>
<tr>
<td>C</td>
<td>-83</td>
<td>-600</td>
<td>118</td>
</tr>
<tr>
<td>D</td>
<td>-124</td>
<td>2500</td>
<td>231</td>
</tr>
</tbody>
</table>
CFD Modelling Capabilities

Results Site D: Sector-wise Normalized Wind Profiles

<table>
<thead>
<tr>
<th>Sector (°)</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s</td>
</tr>
<tr>
<td>30</td>
<td>s</td>
</tr>
<tr>
<td>60</td>
<td>s</td>
</tr>
<tr>
<td>90</td>
<td>s</td>
</tr>
<tr>
<td>120</td>
<td>s</td>
</tr>
<tr>
<td>150</td>
<td>s</td>
</tr>
<tr>
<td>180</td>
<td>s</td>
</tr>
<tr>
<td>210</td>
<td>n</td>
</tr>
<tr>
<td>240</td>
<td>n</td>
</tr>
<tr>
<td>270</td>
<td>n</td>
</tr>
<tr>
<td>300</td>
<td>n</td>
</tr>
<tr>
<td>330</td>
<td>s</td>
</tr>
</tbody>
</table>
Conclusions and Outlook

• Local atmospheric stability plays an important role in the wind flow behavior

• Measurements of stability are necessary

• MERRA has proven to be a valuable dataset for the determination of the monthly overall stability conditions of a site, as long as the surrounding grid points are representative for the site

• The MERRA wind direction distribution can be misleading, for complex terrains and coastal sites with land/sea mixing. Often the use of measured wind direction might improve the results

• Application of MERRA MOL helps with proper setup of CFD Modeling and results in better representation of wind profiles
Acknowledgements

WindSim would like to thank EWC Weather Consult GmbH, juwi Wind GmbH and Karlsruhe Institute of Technology for provision and preparation of measurement data for this presentation.
Thank you

Di Li
di.li@windsim.com
www.windsim.com
Determination and Application of Parameters

Stability Classification Calculation

- Temperature gradient \(T_0 - \gamma z \)

- Monin-Obukhov length

- Richardson

- Many more…
MERRA Data

MERRA data is free available in the internet. The MOL is not given directly but can be calculated by the variables given in the data set.

\[
L = -u^3 * T_{vlml} * cp * \rho_0 / (k * g * shtfl)
\]

\[
\begin{align*}
k & = \text{karman} \\
g & = \text{gravity} \\
cpl/cp & = \text{heat capacity (dry/wet)} \\
Tv & = \text{virtual temperature} \\
tt & = \text{temperature} \\
spfh & = \text{specific humidity} \\
shtfl & = \text{surface heat flux} \\
lml & = \text{lowest model level}
\end{align*}
\]