

Equivalent wind speed for AEP

Rozenn Wagner

DTU Wind Energy Department of Wind Energy

Experimental setup & Data processing

Filters:

- wind direction;
- no rain;
- lidar signal availability 100% at all heights;
- turbine status=1.

Profiles classification

Standard power curve

 \rightarrow 2 groups of profiles result in 2 different power curves

Equivalent wind speed

Concept:

One wind speed representative of the whole wind speed profile in front of the wind turbine rotor in term of power production

Power curve with equivalent wind speed

 \rightarrow Similar power curves are obtained for both groups of profiles

Comparison of the power curves

Difference due to the shear distribution during the power curve measurement.

How can the equivalent wind speed power curve be used for AEP estimation?

Annual Energy Production

AEP estimation

Reference power curve: measured at a reference site

Wind speed distribution at wind farm site

Illustration of the 2 cases with Høvsøre data

DTU Wind Energy, Technical University of Denmark

Illustration of the 2 cases with Høvsøre data

Illustration of the 2 cases with Høvsøre data

 \rightarrow Improved AEP estimation by using the equivalent wind speed both in the power curve and the wind speed distribution.

BUT...

... what if the distribution of the rotor equivalent wind speed at the assessed site is not available?

More realistic application Power curve and wind distribution from 2 separate sites

DTU's Test Site for Large Turbines Høvsøre

More realistic application Power curve and wind distribution from 2 separate sites

DTU

Combination 1:

• Equivalent power curve

 \rightarrow Account for the shear during the power curve measurement; expected to be the same power curve at any site

Reference AEP

• Equivalent wind speed distribution

 \rightarrow Account for the shear at Østerild

Combination 2:

• Hub height power curve

 Hub height wind speed distribution \rightarrow Underestimates the power produced because of the shear during the power curve measurement.

→ Slightly underestimates the energy available because does not account for the shear at Østerild (assumes constant wind speed profiles)

Combination 3:

• Equivalent power curve

 Hub height wind speed distribution → Account for the shear during the power curve measurement; expected to be the same power curve at any site

→ Slightly underestimates the energy available because does not account for the shear at Østerild (assumes flat wind speed profiles)

Summary

	U_hub power curve	Ueq power curve
U_hub distribution	-2.3%	-0.5%
U_eq distribution		(ref)

The error depends both on:

- the U_{eq}/U_{hub} distribution during the power curve measurement and the U_{eq}/U_{hub} distribution at the assessed site

More examples

Case1: $U_{eq}/U_{hub} > 1$

Profiles with larger kinetic energy than flat profiles

	U_hub power curve	Ueq power curve
U_hub distribution	(-3.8%)	(-2.1%)
U_eq distribution		(ref)

Part of the the error due to U_{eq}/U_{hub} distribution at the assessed site larger than before (-2.1%);

 \rightarrow Overall error larger than previous case.

Case2: $U_{eq}/U_{hub} < 1$

Profiles with smaller kinetic energy than flat profiles

	U_hub power curve	Ueq power curve
U_hub distribution	(0.00%)	(+1.8%)
U_eq distribution		(ref)

Specific case: The U_{eq}/U_{hub} distribution are very similar for both datasets.

Conclusions 1

The shear influences the AEP estimation in 2 ways:

- 1) Error in power curve due to the shear during the power curve measurement
- 2) Error in available energy at the assessed site.
- \rightarrow Missing uncertainty terms in the standard AEP estimation
- \rightarrow Equivalent wind speed results in a repeatable power curve.
- \rightarrow Improved AEP estimation with equivalent wind speed
- \rightarrow It requires to measure the wind speed profiles for site assessment

Conclusions 2

What to do if the equivalent wind speed distribution at the assessed site is not available?

- → If the U_{eq}/U_{hub} distributions at the two sites are similar: use the standard AEP calculation (wind speed at hub height).
- → If the U_{eq}/U_{hub} distributions are different: combine the hub height speed distribution with the equivalent power curve.

But to know the U_{eq}/U_{hub} distribution... ... you need to measure the shear!

Acknowledgement: EU SafeWind

DTU Wind Energy, Technical University of Denmark