

Wind, the leading technology in 2030

Stephane Bourgeois, Head of Regulatory Affairs, EWEA Ankara Wind Energy Workshop, 27 March 2013

Outline

- 1. Cost of wind vs. others
- 2. Support for RES vs. others
- 3. Wind, the leading technology in Europe
- 4. The macroeconomic benefits of wind power

Cost of wind vs. others

Cost of wind energy

Evolution and future of Capital costs of wind power onshore and offshore

Range of CAPEX for power generating technologies

Capital cost per technology (euro/kW)					
Technology	2011	2020			
Wind onshore	1,095-1825	803-1533			
Wind offshore	2263-4,307	1,460-2,555			
Gas	584-730	584-730			
Coal	584-1606	584-1606			
Nuclear	1825-4088				

Source : IEA : Energy Technology Perspectives 2012

Levelised cost of electricity from different generating sources

Levelised cost of electricity (€/MWh)						
Technology	2007	2020	2030			
Wind Onshore	85	68	64			
Wind Offshore	104	85	76			
Coal	68	69	68			
Gas	63	84	90			
Nuclear	69	67	68			

Source: European Commission's Information System for the SET-Plan led by the Joint Research Centre (SETIS)

Historical cost reductions – RES vs. nuclear

Sources: Bloomberg energy finance (wind 1984 CAPEX value), EWEA, EPIA, Cour des Comptes (Les coûts de la filière électronucléaire, Jan. 2012).

Fuel and carbon price risk

- To compare LCOE, risk on fuel and carbon price volatility has to be included
- When risk is included in cost comparison, wind is competitive more quickly
- Wind energy (on and offshore) is becoming more preferable not only as a renewable energy technology but also as an investment which will not suffer from unpredictable and volatile costs.

Balancing costs

2. Support for RES vs. Others

Historical and current R&D support

Source: Clean Energy Progress report, OECD/IEA 2011

CEM countries: Australia, Brazil, Canada, China, Denmark, the European Commission, Finland, France, Germany, India, Indonesia, Italy, Japan, Korea, Mexico, Norway, Russia, South Africa, Spain, Sweden, the United Arab Emirates, the United Kingdom, and the United States.

Subsidies for RES vs. fossil fuels

■ Fossil Fuels ■ RES

Source: IEA WEOs

Wind, the leading electricity technology in Europe? The EC Energy Roadmap 2050

New EU power capacity installations 2011-2030 (GW)

European Commission Energy Roadmap 2050 – Diversified Supply Scenario

Electricity Production in 2050

European Commission Energy Roadmap 2050

Macroeconomic benefits of wind power

An exporting industry

€bn	2007	2008	2009	2010
Exports	6,6	7,8	8,5	8,8
Imports	2,7	3,0	3,2	3,2
Balance	3,9	4,9	5,3	5,6

A European Industry

An Industry creating growth and jobs

An Industry avoiding GHG emissions

Electricity Generation Technologies Powered by Renewable Resources

Electricity Generation Technologies Powered by Non-Renewable Resources

An Industry protecting the environment

- No NOx (nitrus oxides) emissions
- No other air pollutants like SO2 (sulphur dioxide)
- Simple decommissioning processes and no storage of waste needed
- Zero fuel extraction
- Minimal use of water

European Environmental Agency - EEA

Water intensities of power generation(m3/MWh), Vestas, 2009

World RES yearly potential vs conventional reserves

THANK YOU!!!

www.ewea.org sbo@ewea.org