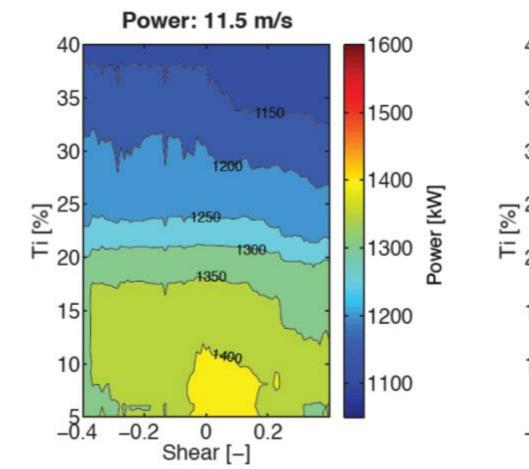
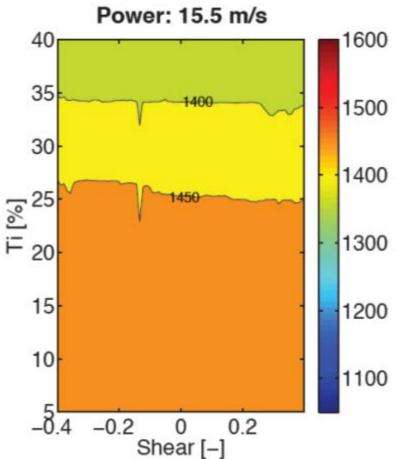


Power Curve Working Group

Patrick Moriarty

December 4, 2012


Impact of Turbulence and Shear


• 1.5 MW Turbine - 5% < TI < 40%, $0.15 < \alpha < 0.25$

Impact of Turbulence and Shear

Turbulence dominates above rated, more complex below

Clifton et al. 2012

Discussion Points

How can the industry make progress on this issue?

- Further analysis of highly instrumented test sites
 - e.g. DTU Høvsøre, ECN, NWTC, TTU
 - What data can be made available to community?
- Identify critical variables that influence power losses (and loads)
 - TKE, Coherent TKE, momentum flux, veer?
 - What can be obtained from existing measurements and what requires new instruments?
 - What is uncertainty for different fidelities of measurement
- Comparison of existing power curve corrections
 - Disk averaged vs. turbulence corrected
 - Weigh ease of implementation vs. improvement
- Suggest public training and testing dataset(s) be created for validation of power curve correction methods

Discussion Points

- What site specific measurements can be used to improve yields?
 - Turbulence intensity and shear important
 - May be other important/encompassing variables engineering analysis and cost benefit analysis required
 - Minimum of hub height towers will multiple vertical stations
 - Possibly augment with remote sensing up to rotor tip for shear
- What extra information can be supplied by turbine manufacturers to improve yields?
 - Data from highly instrumented sites to community
 - Faster time resolution is "free"
 - Some limited knowledge of control operation is required
 - Corrected power curves (possibly unwarranted) will influence what measurements are needed at site
 - Power performance tests at more diverse set of sites