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Back to basics: 
C.J. Christensen et al: ”Accuracy of power curve 
measurements”, Risø-M-2632, 1986 

2 31
2 HHP R vρπ=

”… The power curve is then seen as the relation between the power P(v) produced by this undisturbed 
wind v . 

This definition is, however, of very doubtful value for a windmill in the natural wind. The main difficulty 
is that it assumes a smooth laminar flow of high degree of homogeneity and symmentry” 

… 

”In the case of a linear shear and with negligible turbulence, the driving wind speed is equal to the 
virtual speed at hub height” 
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Analytic solution: Energy flux through the rotor 
(case: exponential wind profiles) 

•Relative to a flat profile the % of the available power varies with the shear exponent. 

•Formula valid for flat profiles (shear exponent equal zero) or  shear exponent a=1/3. 

•Even in the case of well-defined shear profiles, the HH wind speed relation to the power available 
within the rotor disk varies. 

•Conclusion: The wind shear influence the power available and needs to be measured. 

2 31
2 HHP R vρπ=
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Aeroelastic simulations using exponential profiles 
and varying TI levels 

MAWS=6m/s 0.05 0.1 0.15 0.2 0.25 0.3 0.4
2 101.15 100.69 100.36 100.27 100.01 100.00 100.23
4 101.20 100.74 100.40 100.30 100.03 100.02 100.23
6 101.33 100.86 100.53 100.43 100.16 100.14 100.35
8 101.53 101.07 100.73 100.63 100.36 100.34 100.55

10 101.80 101.35 101.01 100.91 100.64 100.62 100.82
12 102.17 101.71 101.37 101.27 101.00 100.98 101.17
14 102.62 102.16 101.83 101.73 101.46 101.43 101.62

Shear.x

TI
(%

)

MAWS=10m/s 0.05 0.1 0.15 0.2 0.25 0.3 0.4
2 100.93 100.72 100.56 100.51 100.37 100.34 100.40
4 100.89 100.67 100.50 100.44 100.29 100.26 100.31
6 100.84 100.62 100.45 100.39 100.24 100.21 100.26
8 100.78 100.56 100.39 100.33 100.19 100.16 100.21

10 100.72 100.50 100.33 100.27 100.13 100.10 100.15
12 100.67 100.45 100.28 100.22 100.08 100.05 100.10
14 100.61 100.40 100.23 100.17 100.03 100.00 100.06

Shear.x

TI
(%

)

•Limited average AEP variations, decreasing as mean annual wind speed increases 

•Logarithimic wind shear profiles used for aeroelastic simulations 

•No wind veer 

• Varying turbulence vs. wind speed 
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The measurement method influence on the conclusions: 
Midwest site power curve vs. the HH wind speed (1)  
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10min. values
Measured-AEP-day=100%
Measured-AEP-night=103%

Night PC

Day PC

Delta AEP=3% 

Possible conclusion:  

Wind turbines perform 
better during stable 
conditions 

Predominantly stable 

Predominantly unstable 
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The measurement method influence on the conclusions: 
Midwest site power curve vs. the HH wind speed (2) 

OR  
is it maybe the measurement method playing games with us?  

Answer: YES 

The influence of an advantageous wind profile due to a LLJ 
during night hours is not registered by the wind speed 
measurement at HH. 

Question:  

Is there a more consistent method which can describe the 
turbine response vs. the wind profile properties ? 

Courtesy N. Kelley 

Turbine HH 
Rotor limits 
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Wind shear, wind veer and TI filtering influence the 
turbine response 
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All data, AEP: 100.2% 
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measured data
Measured bin
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-5°<Wind veer<5° @ TI>5%, AEP: 101.8% 

 

 

measured data
Measured bin
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-5°<Wind veer<5°, TI>5%, a<0.15, AEP: 102.2% 

 

 

measured data
Measured bin

Question: 

Does the turbine produce better during low shear, low veer and higher TI 
conditions? 

OR: 

Has our filtering, modified the energy contents of the wind profile ? (without our 
measurement method being able to register it!) 
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Using a LIDAR to measure inflow: 
The equivalent wind speed concept 

( )3
3

1 ( ) cos( ( ))
H R

H R

V v z z dA
A

ϕ
+

−

= ∫

•A LIDAR is deployed next to a met mast 

•The LIDAR can measure the wind speed and direction at more heights 
regularly distributed over the rotor 

•The wind speeds at all heights are normalized by dividing with the 
LIDAR wind speed at hub height. 

•The LIDAR wind directions at all heights are subtracted from the 
direction at hub height (wind veer relative to hb height). 

•The normalized LIDAR wind speeds at all heights are multiplied with the 
cosine of the direction angle relative to hub height  

•Subsequently all wind speeds are multiplied with the cup wind speed at 
hub height.  
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 The importance of wind veer 

Assuming the same wind speed magnitudes within the rotor disk: 

Larger veer is equivalent with lower available energy through the turbine 
rotor 
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PC and load measurement campaign in EU flat terrain: 
Using a HH cup and a LIDAR to measure inflow (1) 
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PC and load measurement campaign in EU flat terrain 
Using a cup and a LIDAR to measure inflow (2) 
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•Significant wind shear and veer over the 
rotor height 

•Both negative and positive differences of 
the equivalent wind speed relative to HH 
cup 
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PC and load measurement campaign in EU flat terrain 
Using a cup and a LIDAR to measure inflow (2) 
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EU flat terrain: 
Measured and calculated equivalent loads using a HH 
cup and a LIDAR to measure inflow (3) 

Cup at HH 

Flap-root 
bending 

Edge-root 
bending 

LIDAR wind profile +veer re. HH 

Measured 

Calculated 

Bin calculated 

Bin measured 
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EU flat terrain: 
AEP using a HH cup and a LIDAR to measure inflow (3) 

AEP  
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AEP  
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All data 100% 101.4% 

TI>=5% 100.8% 101.5% 

TI<=5% 99.2% 101.2% 

TI>=6% 100.9% 101.3% 

TI<=6% 99.4% 101.2% 

TI>=7% 100.7% 101.3% 

TI<=7% 99.6% 101.3% 

Deltamax-min (%) 1.6% 0.3% 
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PC measurement campaign in flat terrain Midwest USA : 
Using a cup and a LIDAR to measure inflow (2) 

•Significant wind shear and veer over the 
rotor height (more than in EU terrain). 

•Both negative and positive differences of 
the equivalent wind speed relative to HH 
cup. 
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Midwest USA flat terrain: 
AEP using a HH cup and a LIDAR to measure inflow (3) 
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All data 100% 100.8% 

TI>=4% 100.6% 100.7% 
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The next step: Equivalent wind speed combined with  
TI normalization at a certain TI level. 

2
2

2

2
2

2

2
2

2

( ) 1 ( )( ) ( ) ( ) ( ) ...
2

( ) 1 ( )( ) ( ) ( ) ( ) ...
2

1 ( )( ) ( )
2 u

dP u d P uP u P u u u u u
du du

dP u d P uP u P u u u u u
du du
d P uP u P u

du
σ

= + − + − +

= + − + − +

= +

Turbulence represents additional energy for the existing 
wind; depending on the  curvature of the power curve this 
energy is added (concave part up) or subtracted (concave 
part down) 

(work by Emil Sørensen) 

TI varies with height 

Challenge: Find a TI representative of the whole rotor 
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Conclusions  

1. Wind shear, wind veer and TI contribute in the energy available within the rotor disk. 

2. This makes the HH wind speed measurement a poor method for measuring a turbine’s 
power curve, especially for larger turbine rotors. 

3. The equivalent wind speed takes into account both wind shear and veer and seems  
more robust  in delivering more consistent load and AEP results, compared to the HH 
wind speed. 

4. Pseudo-dillema: Overprediction-Underperformance gap are two sides of the same coin! 
Improvements will only happen if: 

• New wind speed measurement methods are used for PC campaigns! 

• Siting measurements are upgraded; a combination of HH masts and remote 
sensing devices to measure both wind and direction at more heights both below 
and above HH 

• Flow modelling examines other than neutral conditions. 
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Thank you for your attention 
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