Power Curves for Different Ambient Conditions GE's perspective on extreme inflow conditions

Henk-Jan Kooijman Acknowledgement: Saskia Honhoff, Dale Apgar, Peter Gregg, Philippe Giguere, Barry Vree

London, UK, 4 December 2012

Extreme inflow conditions

Important to differentiate between:

- PC and AEP impact
- Instantaneous / diurnal / seasonal / stochastic
- Ambient / terrain influences / wind farm induced
- Measured performance vs. model predictions
- Aero design robustness to performance variation

Proper data filtering entails:

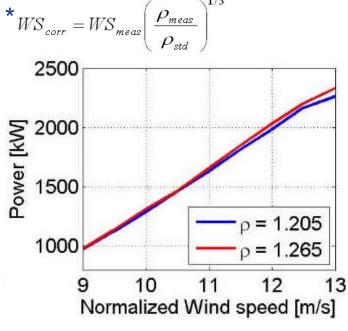
• Due consideration of site-specific conditions and correlations is required to define data filtering procedure.

Recommendation

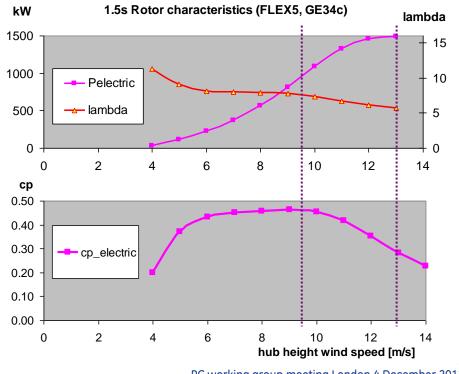
Create a shared industry recommended practice on how extreme inflow conditions affect wind turbine performance.

This may be used as a basis for best practices on PC validity and measurement data filtering by individual organizations and OEM's (voluntarily).

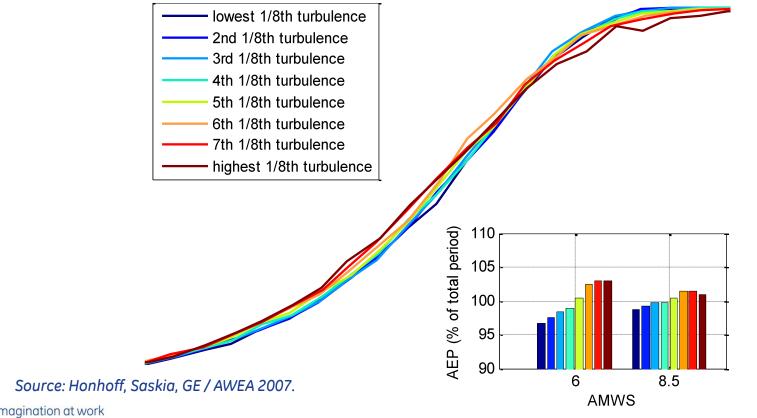
Three very complex terrains

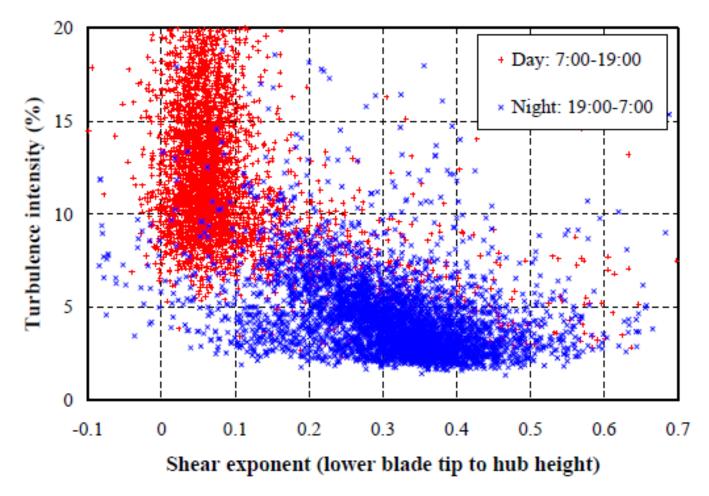

Photo courtesy Peter Gregg, GE

PC effect from air density


The PC correction for air density in IEC 61400-12* is inaccurate for VSP turbines with a constant speed region because it neglects the change in minimum TSR and in aerodynamic efficiency.

Overestimation per IEC for ρ = 1.0 kg/m³ is ~2% AEP

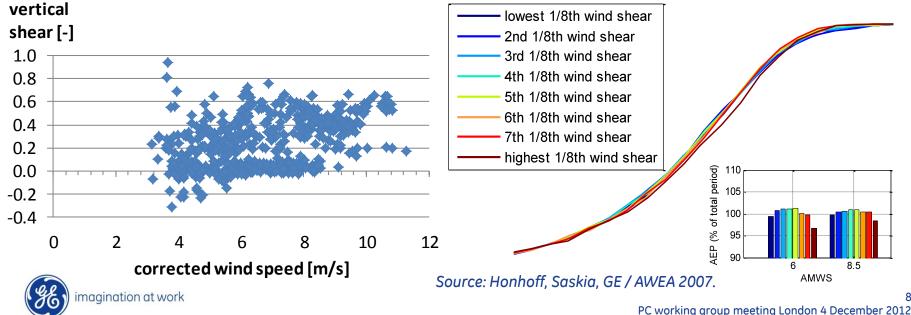

Source: Wagenaar, J.W. ECN / EWEA 2011



PC effect from turbulence

Turbulence creates opposite effects on power capture in the tail and the knee of the PC

Correlation between TI and shear


Source: E. Rareshide, Garrad Hassan / AWEA May 2009

PC effect from wind shear

Wind shear and turbulence are correlated but their effect on aerodynamic efficiency is twofold.

- Lower turbulence improves PC knee (+)
- Shear increases affects rotor average mean wind speed (±) and yields larger 1P-variations in inflow angle (-)

GE, H.J.T. Kooijman

Selected literature

Rareshide, E. et al. : Effects of Complex Wind Regimes on Turbine Performance. Garrad Hassan / AWEA May 2009

Wächter, Matthias, Mücke, Tanja, and Peinke, Joachim: Influence of vertical shear and turbulence intensity on Langevin power curves. Forwind / DEWEK 2010

Wagner, Rozenn: Accounting for the speed shear in wind turbine power performance measurement. Risø-PhD-58(EN), April 2010.

Honhoff, Saskia: Power Curves - The effect of environmental conditions. GE / AWEA 2007

Wagenaar, J.W. and Eecen, P.J.: Dependence of Power Performance on Atmospheric Conditions and Possible Corrections. ECN-M--11-033 / EWEA 2011

Wharton, Sonia and Lundquist, Julie K: Atmospheric stability affects wind turbine power collection. Lawrence Livermore National Lab, University of Colorado Boulder and NREL. IOP Science 2012

Thank you

Acknowledgement (arbitrary order):

- Philippe Giguere
- Saskia Honhoff
- Dale Apgar
- Peter Gregg
- Barry Vree
- and others

