Turbine Supply Agreements or

What do all those little words mean at the bottom of the contract

Malcolm D Hayes Hayes McKenzie Partnership Ltd.

What is a TSA Noise Wise?

- A specification of the noise emission level of a wind turbine which includes:
- L_{WA}
- Tonality
- Additional Character?
- Operational Noise Levels at a Receptor!!!!

Why do we need a TSA?

- How are we to rely on Noise Predictions
 for EIA?
- How confident are we in the level predicted?
- How are we to know that operational noise levels will meet any Permit Conditions?
- What about the character of the sound?

Sound Power Level L_{WA} Where does this information come from?

Supplied by the Manufacturer based upon

- Proto-type Wind Turbines
- Operational Wind Turbines
- Measurements undertaken in accordance with IEC 61400-11
- Proto-type Measured Data with calculated corrections for final version
- Magic!

Typical TSA L_{WA} Derivation

- Measurements in accordance with IEC 61400-11
- Full Test Report Preferred
- Summary Sheet as a minimum
- More than 1 turbine test allows an assessment of declared L_{WA} in accordance with IEC 61400-14.

TSA Warranted Level

Typical for Warranted Level to have measurement conditions specified which can include the following:

•A specified turbulence intensity: Typically < 15%

•A specified inflow angle: Typically $< \pm 2 - 4^{\circ}$

•A specified wind shear exponent: m = 0.12 – 0.16

Turbulence Intensity

Turbulence Intensity

Figure 2-14 Downstream development of wake behind a wind turbine. Upper Figure: $U_0 = 6 \text{ m/s}$; Middle Figure: $U_0 = 10 \text{ m/s}$; Lower Figure: $U_0 = 14 \text{ m/s}$. In all figures the rotor is located to the left.

Dynamic wake meandering Modeling Risø-R-1607(EN)

Turbulence Intensity

Dynamic wake meandering Modeling Risø-R-1607(EN)

Figure 3-13 Computed and measured 2.5D downstream mean wake turbulence intensity profiles corresponding to an ambient mean wind speed equal to 10 m/s and to an ambient turbulence intensity equal to 9%. From [2].

Inflow Angle

Inflow angle will change angle of attack and as a result can result in an increase in blade noise and/or stall

$L_{\it slope}/H_{\it slope}$	H_{sep}
0	0
1	0.15 H _{slope}
2.512	0.3 H _{slope}
4	0.15 H _{slope}
≥5	0

Streamwise Velocity (ms⁻¹)

Flow separation can occur in presence of terrains with slopes of approx. 20°.

Wind Shear: Diurnal Variation

In general, noise complaints are associated with early evening or night-time operation.

Wind shear exponents greater than m = 0.12 -0.16 typically occur at these times!

Wind Shear: Topographical

Strange wind shear phenomena due to terrain

Meeting the TSA Environmental Measurement Conditions

Effects of complex wind regimes on turbine performance – AWEA Windpower, Chicago, May 2009

Meeting the TSA Environmental Measurement Conditions

AWEA Windpower, Chicago, May 2009

Meeting the TSA Environmental Measurement Conditions

Effects of complex wind regimes on turbine performance – AWEA Windpower, Chicago, May 2009

Meeting the TSA Environmental Measurement Conditions

Effects of complex wind regimes on turbine performance – AWEA Windpower, Chicago, May 2009

Acceptance Measurements for Wind Turbine

- Requires specific conditions to be met for acceptance by supplier
- The conditions may not be possible on some sites!
- The conditions may not relate to the time when complaints are received off site at a noise sensitive receptor, i.e. does the L_{WA} warranted relate to the L_{WA} at the time of complaint?

Declare Sound Power Level Warranties

- To be welcomed as a means of defining the acceptability of the supplied wind turbine
 BUT
- Applying the method within IEC 61400-14 does bring a necessary measurement requirement!

standard deviation of reproducibility σ_{R} ۲

standard deviation of noise emission values obtained under reproducibility conditions, i.e. the ۲ repeated application of the same noise emission measurement method on the same wind turbine at different times and under different conditions (different wind directions, different personnel, different apparatus)

standard deviation of production σ_{P} ۲

- standard deviation of measured noise emission values obtained at different turbines from a batch, ۲ using the same noise emission measurement method under repeatability conditions (same operators, same apparatus)
- Assume .
- σ_R = 0.9 dB
- σ_P = 0.5 dB
- .

Total Standard Deviation $\sigma_{t} = \sigma = \sqrt{\left[\frac{n+1}{n}\right]^2 (\sigma_R^2 + \sigma_P^2)}$

K = 1.645 σ_t = reflects a probability of 5 % that an apparent sound power level measurement • result made according to IEC 61400-11 performed at a turbine of the batch exceeds the declared value

- Single measurement of a turbine installed at a site will need to exceed warranted level by at least 2.4+ dB before it might be considered non-compliant.
- The greater the number of turbines measured on site, the greater the confidence in the derived $\rm L_{\rm WA}$

but

- Increased numbers of turbines tested will have a diminishing benefit
- It has been suggested that K < 1.5 dB within some documents!

TSA Tonality

Warranty Options include

- Measurement at Reference Location 1 and/or Optional Locations 2 4.
- At Receptor Locations!

Acceptability Criteria (at Reference Location)

- No tone greater than $\Delta L_{a,k} < 2.0 \text{ dB}$ (IEC 61400-11)
- FGW-Guideline ^[1] (without taking into account any tonality $K_{TN} \le 2 \text{ dB}$)

Acceptability Criteria (at Receptor Location)

- ETSU-R-97 Tonal Assessment Method Penalty System applied to derived $L_{\rm WA}$ (in UK)
- Some times there is NO TONALITY WARRANTY!!!!!!!!!

Technische Richtlinie für Windenergieanlagen – Teil 1: Bestimmung der Schallemissionswerte; Editor: Fördergesellschaft Windenergie e. V.; Revision 17, 2006-07-01

TSA Audible Characteristics

- Modulation of Aerodynamic Noise Method proposed within FGW Guideline following Impulsive Noise Assessment Method.
- Debateable whether such a test is relevant at the reference measurement location for L_{WA} determination,
- DIN 45645-1 Determining noise rating levels from measured data. Part 1: Environmental Noise. Measurements to be undertaken at the receptor location.
- Low Frequency?
- Thumping?
- Noise when parked?

TSA – You need one

- Specifies L_{WA}
- Specifies tonal noise emissions
- Specifies clearly environmental conditions for any compliance measurement;
- Specifies criteria for a breach of TSA Noise Guarantee

