Noise source characterization by highfrequency surface pressure measurements

Helge Aagaard Madsen Andreas Fischer Franck Bertagnolio Christian Bak

Section Aeroelastic Design Department of Wind Energy

hama@dtu.dk

DTU Wind Energy Department of Wind Energy

Outline

Part 1

Overview of aeroacoustic noise sources The empirical Brooks Pope Marcolini model

Part 2

 Measurement of high frequency surface pressure fluctuations for blade noise characterization

Overview of aero acoustic noise sources

.

£.	ľ	ĩ	1	I
h	2	l	5	2
	5		2	2
-	5	-		5

Table 4.1: Survey of wind turbine aerodynamic noise mechanisms.

Indication	Mechanism	Main characteristics/importance Frequency is related to blade passing frequency (BPF), not important at current rotational speeds Frequency is BPF-related, small in case of upwind turbines / possibly contributing in case of wind parks	
Steady thickness noise / steady loading noise Unsteady loading noise	Rotation of blades / rotation of lifting surfaces Passage of blades through tower velocity deficit / wakes		
Inflow turbulence noise	Interaction of blades with atmospheric turbulence	Contributing to broadband noise, not yet fully quantified	
Airfoil self-noise -Trailing-edge noise	Interaction of boundary layer turbulence with blade trailing	Broadband, main source of high-frequency noise	
-Tip noise	edge Interaction of tip turbulence with blade tip surface	(750 Hz < f < 2 kHz) Broadband, not yet fully understood	
-Stall, separation noise	Interaction of 'excess' turbulence with blade surface	Broadband	
-Laminar boundary layer noise	Non-linear boundary layer instabilities interacting with the blade surface	Tonal, can be avoided	
-Blunt trailing edge noise	Vortex shedding at blunt trailing edge	Tonal, can be avoided	
-Noise from flow over holes, slits, intrusions	Instable shear flows over holes and slits, vortex shedding from intrusions	Tonal, can be avoided	

important noise sources

Two most

Wagner et al. (1996)

The Brooks, Pope and Marcolini (BPM) model

- turbulent boundary layer trailing edge noise (TBLTE noise)

Figure 4.11: Principal mechanism of trailing-edge noise.

Sound pressure level

 $L_{P,TBLTE} \approx \left(V_{rel}^5, \alpha \right)$

Contributions from both the suction and pressure side

Turbulent inflow noise

- turbulent inflow noise (Amiet, Lowson)

 $L_{P,TI} \approx \left(U_{\infty}^2, TI^2, l, V_{rel}^4 \right)$

 $L_{P,TI} \approx \left(U_{\infty}^2, TI^2, l, V_{rel}^3 \right)$

Figure 4.10: Turbulent eddies approaching the rotor blade.

Wagner et al. (1996)

HAa Madsen et al. -- Presentation at EWEA 2012 acoustic workshop

Total noise computation

- BPM model + TI model (Amiet, Lowson)

Input data

- planform (chord and twist)
- ➤ rotor size
- ➤ rotational speed
- blade pitch setting
- inflow turbulence intensity
- inflow turbulence length scale
- directivity data

Aerodynamic model (BEM) computes:

- Inflow angle along blade span
- relative velocity along blade span

Total noise found by summing up the different noise sources from all blade elements of the rotor

HAa Madsen et al. -- Presentation at EWEA 2012 acoustic workshop

An example of contribution of the different aero acoustic noise sources

BPM model – a validation example

Figure 4-7 Predicted sound power level in dB(A) compared to experimental results from Jacobsen & Andersen [14] for the Vestas V27 wind turbine at 8 m/s, tip pitch 0.5°.

Fuglsang and Madsen (1996)

BPM model – influence of tip pitch

Figure 4-12 Sound power level in dB(A) predicted for different tip pitch angles, compared with experiment for the Vestas V27 at 8 m/s.

Fuglsang and Madsen (1996)

BPM model – used in rotor optimization

	Baseline ro ⁻	tor		
	-			
	Bonus Combi 300 kW	 Optimized for min. noise constrained production 	2) Optimized for max. production constrained noise	 Optimized for max. production
Production (MWh)	838	838	855	860
Noise (dB(A))	98.0	94.9	98.0	101.2
Tip speed (m/s)	56.8	50.1	57.0	65.2
Tip pitch (deg)	-1.8	1.2	0.8	0.6

Fuglsang and Madsen (1996)

Outline – Part2

Measurement of high frequency surface pressure fluctuations for blade noise characterization

- Why using high frequency surface pressure measurements ?
- The measurement technique
- Measurements on a full scale 80m diameter rotor
- Perspectives for application of the technique

Why using high frequency surface pressure (SP) measurements for aeroacoustic characterization ?

- □ SP is the source of turbulent inflow (TI) noise
- SP has a high intensity compared with ambient noise (an example will be shown)

- Measuring SP enables correlation with detailed inflow data from inflow sensors on the blade, resolving 1p variations causing amplitude modulation (an xample will be shown)
- Measuring SP provides more accurate aeroacoustic characterization during design and testing of new low noise airfoil designs
- Measuring SP provides detailed noise source information, enabling continuous, optimal input to the turbine control system for operation within noise constrains

Drawbacks with the SP technique compared with traditional far field measurements

it is measurements at a cross section of a blade

 uncertainty in converting the SP to the far field noise

DTU Wind Energy, Technical University of Denmark

.

SP in the turbulent boundary layer has a high intensity compared with the far field sound

The inflow to the blade is varying considerably in time, in particular over 1p -the same is the noise source

Measured inflow angle at radius 30m on a 2MW turbine

DTU Wind Energy, Technical University of Denmark

HAa Madsen et al. -- Presentation at EWEA 2012 acoustic workshop

The measurement technique

SURFACE PRESSURE – Meas. Technique 🗮

Flush-mounted HF microphones

21 DTU Wind Energy, Technical University of Denmark

HAa Madsen -- Presentation at IQPC "Wind Turbine Noise and Vibration Control", 22-24 October 2012

Calibration of microphones in cooperation with B&K

(a) reference microphone and pinhole

(b) Sennheiser headphone HD650 source

Figure 4: High-Frequency Microphones Deviations [Figure courtesy of Brüel & Kjær]

DTU Wind Energy, Technical University of Denmark

HAa Madsen et al. -- Presentation at EWEA 2012 acoustic workshop

Measurements on a full scale 80m diameter rotor

- From the DAN-AERO project -

Measurement of SP on a full scale rotor blade, 80m III diameter rotor, 2MW - - DAN-AERO MW project

surface pressure and inflow measured at 4 radial stations

> the outboard station also instrumented with around 60 microphones for high frequency surface pressure measurements

high frequency measurements of the inflow

measurements from June to September 2009

Installation of the 38.8m instrumented blade in May 2009

HAa Madsen et al. -- Presentation at EWEA 2012 acoustic workshop

Campaign measurements from June to September 2009

Pressure and inflow measurements on the NM80 turbine in the Tjaereborg wind farm

high frequency inflow sensors

five hole pitot tubes

HAa Madsen et al. -- Presentation at EWEA 2012 acoustic workshop

Measurement of SP on a full scale rotor blade, 80m diameter rotor, 2MW

DTU Wind Energy, Technical University of Denmark

HAa Madsen et al. -- Presentation at EWEA 2012 acoustic workshop

TE spectra measured during free inflow at 9-11m/s -- amplitude modulation

Each spectrum is based on 0.5sec

HAa Madsen et al. -- Presentation at EWEA 2012 acoustic workshop

TE + LE spectra measured during free inflow at 9-11m/s

Each spectrum is based on 0.5sec

HAa Madsen et al. -- Presentation at EWEA 2012 acoustic workshop

DTU

Perspectives for application of the technique

A blade mounted sensor system for aeroacoustic noise source monitoring and control

Objectives of blade mounted monitoring system:

- continuous monitoring of the noise source by measuring HF SP at a few points on each blade
 - derive total noise of turbine based on numerical modelling and experimental calibration
 - derive details of noise source variation as function of blade position

Advantages of system

- Detailed and continuous source monitoring enables changes of turbine control system only when necessary
- Detailed source monitoring can provide input to the control system on an azimuth level, e.g. for individual pitch control to reduce/avoid amplitude noise modulation

Proposed system

One output screen from the system could be continuously updated PSD spectra of surface pressure fluctuations and **a noise constrain line**

DTU

Acknowledgements

The work has been carried out within the projects **DAN-AERO** and **DAN-AERO II**

Funded partly by **EUDP**; contracts ENS-33033-0074 and ENS-64009-0258

Partly by the project participants:

- Siemens
- Vestas
- LM Wind Power
- Dong Energy
- DTU Wind Energy

DTU