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1 Introduction

The world has changed dramatically for wind farm operators and service pro-
viders in the last decade. Organizations whose turbine portfolios was counted
in 10-100s ten years ago are now managing large scale operation and service
programs for fleet sizes well above one thousand turbines. A big challenge such
organizations now face is the question of how the massive amount of operational
data that are generated by large fleets are effectively managed and how value
is gained from the data. A particular hard challenge is the handling of data
streams collected from advanced condition monitoring systems. These data are
highly complex and typically require expert knowledge to interpret correctly
resulting in poor scalability when moving to large Operation and Maintenance
(O&M) platforms.

In this paper we present a purely data driven fault detection method that has
the potential to vastly improve the scalability of fleet wide condition monitoring
systems as much of the complex diagnostic process can be put in algorithmic
form. A feasibility study has been performed on data from 61 actual main bear-
ing failures on both on- an offshore turbines. The study will provide a solid
stepping stone for further research into data driven turbine diagnostics, but will
also provide the diagnostic performance metrics required for practitioners that
may wish to implement such technology in a large scale monitoring setting.

2 Data driven fault detection

Recent reviews of condition monitoring applications in wind turbines can be
found in [1], [2] and [3]. The diagnostic task we focus on in this work is the
detection of spalling on the inner- and outer raceways of the main bearing of
geared turbines. Vibration based diagnostics [4] is a mature technology for mon-
itoring turbine drive trains and here we will restrict ourselves to vibration-based
fault detection.
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Two fundamentally different approaches exist for developing fault detection sys-
tems. One is a model-based approach typically using first principles. The sec-
ond, is a data driven approach where the configuration of the diagnostic system
is inferred from data. Data driven approaches for turbine diagnostics are typ-
ically unsupervised in the sense that models are fitted to no-fault conditions
whereafter faults are identified as deviations from this model of normality [5] [6]
[7] [8] [9] [10] [11]. When moving to large scale monitoring platforms, a sufficient
number of actual failure data is now available to approach the diagnostic prob-
lem using fully supervised classification, where models are trained to distinguish
between the fault/no-fault state in the dichotomous case. This is the approach
we adopt here.
In order to frame the learning process we start by recognizing that state-of-the-
art large scale vibration monitoring systems are based on a suite of automated
outlier detection algorithms to generate warnings of potential faults, but the
end diagnosis still heavily relies on human interaction as experts sift through
the available data to provide early fault detection. Inspired by the diagnostic
process performed by these analysts we will therefore explore whether the task
can be fully or partly automated using deep and shallow learning architectures.

3 Methods

By observing how an experienced vibration analysis expert solves the task of
detecting faults on a main bearing, a number of key elements was identified in
this process, namely 1) feature selection, 2) time frame selection and 3) learnings
from past observed faults. We will address these elements as follows:

Features A subset of two measurements was selected for this study, namely
low-frequency acceleration autospectra (10-62 Hz) and low to mid-frequency
acceleration autospectra (10-1000 Hz) from a single sensor mounted on the
bearing housing. It is important to stress that we only perform feature
selection on this high level. No attempts will be made to reduce these
data to low dimensional diagnostic features using hand-crafted failure sig-
nal models or unsupervised methods. The aim is to have the models infer
features of diagnostic relevance automatically from the high level feature
set.

Time frame Based on input from the expert, a time window spanning back
six months for both measurements was selected as input.

Experience Full vibration data records were collected from 61 turbines with
known main bearing faults. The model was trained to detect faults using
this data set as background knowledge.

3.1 Data augmentation and processing

The full data set was split in three: 1) A training set contaning data from 49
turbines used for training the models. 2) a validation set containing data from
6 turbines used for monitoring the generalization properties of the model during
training and finally 3) a test set of 6 turbines which was used to evaluate the
performance of the models performing best on the validation set.

2



For each of the selected turbines, the expert was tasked with specifying the
change point from fault to no-fault condition using whatever data source he or
she had available. This will be named as the Expert Retrospective Changepoint
(ERC), as it is inferred from the full time record. In an online setting, the time
of detection will generally be later compared to the ERC as more data will have
to be observed before an accurate detection can be made. From this specified
ERC for each turbine, a number of random time windows was extracted around
this date, with random width scaling factors. This data augmentation scheme
has been implemented to increase the generalization properties of the models by
adding a stochastic term to the ERC as well as a stochastic term to the failure
rate. The available vibration data was not sampled equidistantly, so the data
was further processed using linear interpolation on an uniform time grid with
100 samples in the time dimension. The total number of input dimensions in a
given window for both channels totals 100× 2684 + 100× 396 = 30800.

3.2 Models

The first model to be considered is a logistic regression model [12], where the
posterior fault probability is parameterized as

p (Fault|x) = σ
(
wTx

)
, (1)

where σ is the sigmoid function, w is the parameters of the model and x is the
input data vector.
As recent work on deep learning structures [13][14] has provided state-of-the-
art results on complex image recognition tasks, a deep learning convolutional
fault recognition model was implemented to investigate if a deeper architecture
could provide increased diagnostic performance in the given learning setting.
The deep network is composed of two distinct recognition channels as depicted
in 1. Rectified lienar units were used for all hidden units and the networks were
trained using AdaGrad [15]

Figure 1: Schematic of the deep convolutional network investigated in this work.
Convolutional layers are marked in blue, max-poling layers are marked in red
and fully connected layers are marked in green. Only four kernels are shown for
each convolutional layer, the actual network uses 32 kernels.
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4 Results

From the training and validation stage the best performing models were tested
on the test set of turbines. The results are listed in table 1. Both models provide
high accuracies on the test set, but the deep network performs better measured
both in terms of cross entropy error and accuracy. These results indicate that
both models generalize well to new observations. A detailed biew of the fault
probability output from the two models have been plotted in figures 2a and 2b
for two of the test turbines. These plots show a strong signal separation from
the no-fault to the no-fault state and back again when the bearing is replaced.

When implementing such model in large scale monitoring platforms it is not
the performance on individual failed turbines that is most relevant, but the
performance across the entire fleet, including the turbines in no-fault states.
We therefore evaluate the models, based on the data from all 61 turbines, in
terms of Receiver Operating Characteristics (ROC) [16]. These curves will be
heavily dependent on how early the fault must be detected. Again using the
ERC as a fixed reference point, ROC-curves can be generated for each classifier
using a sliding window approach. The results can be observed in figures 3a and
3b. When moving beyond +30 days relative to the ERC, both models become
perfect classifiers. These results indicate that the better fit of the deep network
observed on the test set does not translate directly into better classifier perfor-
mance.
The overall classifier performance as a function of required detection lead time
can be condensed to a single value, namely the Area-Under-Curve (AUC) which
is the area below the given ROC-curve. The AUC-values are plotted in figure
4 and show a marginal better performance by the logistic model in the later
stages of failure development, and marginally better performance by the deep
model during the very early stages.

Average test error Test accuracy
Logistic 0.118 94.60%
Convolutional network 0.084 97.02%

Table 1: Results on test set specified in terms of cross entropy error and detec-
tion accuracy.
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(a)

(b)

Figure 2: Examples of the predictions from the convolutional and logistic model
for two of the turbines in the test set. The ERC and the component exchange
date has been marked with red vertical lines. A clear indication of a fault can
be observed in all cases, as well as the return to a no-fault condition when the
component is exchanged.

(a) (b)

Figure 3: Receiver Operating Characteristics for logistic regression (left) and
deep convolutional network (right).
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Figure 4: Area Under Curve plots based on detection lead time dependent
ROCs.
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5 Conclusion

The conclusions to be drawn from this study are as follows:

• A structured learning setting was established on which data driven fault
detection methods can learn from the output of an experienced vibration
analyst.

• Building on this framework, impressive results were demonstrated for a
main bearing fault detection application using both shallow and deep
learning architectures:

– The fault detection models show clear fault/no-fault state separation
on turbines with main bearing failures.

– From the large failure data set used for this study, the performance
of the models in large scale settings was evaluated using metrics such
as Receiver Operating Characteristics. At detection lead times near
those of a human expert, the models provides high true positive rates
and low false positive rates.

– The demonstrated methods are easily scalable to large turbine fleets.
The good performance of the logistic model coupled with a simple
training schedule makes it the first choice for any practical applica-
tion.

6 Learning objectives

Although the handling of the large data streams collected from wind turbine
fleets of today and tomorrow might seem challenging at first, this study shows
that many opportunities can also be created from this data deluge using data
driven methodologies. It was demonstrated how state-of-the-art results were
obtained in a fault detection application without any detalied knowledge of the
underlying mechanical system, by solely relying on the specification of some
high level features and then adapting from the analytical process performed by
a human expert.
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