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1. Introduction  

Wind energy is seeing huge increases in 

production with the Global Wind Energy Council 

reporting that global installed wind capacity 

has increased from 6.1 GW in 1996 to 318 GW 

in 2013, and is predicted to rise to 596 GW by 

the end of 2018 [1]. Offshore wind is expected 

to play a significant role in meeting this target, 

with projections of an increase in the 

proportion of offshore turbines from 2% to 10% 

of global wind capacity between 2015 and 

2020 [2]. As large-scale wind farms (WF) move 

further offshore, achieving a high availability 

and capacity factor and ensuring that loss of 

energy and turbine downtime is minimised, are 

essential for a competitive cost of energy. The 

costs of offshore operations and maintenance 

(O&M) have been quantified as three to five 

times higher than those onshore [3], with a 

considerable part, typically up to 70%, 

associated with unscheduled maintenance [4]. 

These issues highlight the importance of O&M 

strategy within economic viability evaluation of 

large offshore WFs. The adoption of cost 

effective condition monitoring (CM) techniques 

is crucial in reducing O&M costs, avoiding 

catastrophic failures and minimizing costly 

corrective maintenance. The loading on the WT 

drive train components is highly variable and 

the study of transient conditions is 

fundamental to the development of reliable CM 

techniques.  

Recent studies have shown the potential 

benefits of adopting CM systems (CMSs) based 

on the measurement of WT drive train shaft 

torque for the detection of rotor electrical 

asymmetry and stator winding faults [5][6], 

mass imbalance [7], gearbox failures [8], blade 

mass imbalance and aerodynamic asymmetry 

[9]. However, the measurement of shaft torque 

is largely limited to the laboratory environment. 

The major obstacle to industrial application is 

the costly and intrusive nature of the required 

measurement equipment, which is impractical 

for long-term use on operating WTs.  

This paper details research conducted on a 

low-cost, non-intrusive WT torque 

measurement method based on timing 

differences between optical probes along the 

shaft with a focus on tracking transient 

conditions for use in a CMS. 

2. Theoretical Background 

The torque applied to a rotating shaft is 

proportional to the twist angle between two 

points on the shaft [10]: 

 𝑇 = 𝐼�̈� + 𝐾𝜃 (1) 

where T is the applied torque, I is the  shaft 

moment of inertia, K is the shaft torsional 

stiffness and  is the relative twist angle given 

by: 

𝜃 = 𝜃𝑎 − 𝜃0 (2) 

where a is the absolute twist angle and 0 is 

the no-load twist. a can be calculated by 

measuring the timing difference and rotational 

speed between two points on the shaft [11]: 

𝜃𝑎 = 120𝜋𝜔∆𝑡 (3) 

where 𝜔 is the shaft rotational speed and ∆𝑡 is 

the timing difference or phase shift. The no-

load twist 0 is the absolute twist angle before 

torque has been applied to the system.  



3. Non-Intrusive Torque 

Measurement  Algorithm 

The proposed non-intrusive torque 

measurement approach employs equation (1) 

to calculate the torque from the phase shift 

between the pulses generated by two bar 

codes and optical probes, one at each end of 

the shaft. The optical probes identify a black or 

white segment and produce a fixed voltage 

when reading white and zero volts when 

reading black, resulting in two pulse trains as 

the shaft rotates (Figure 1). 

  

Figure 1: Typical pulse train, where Δt1 is the 

period and Δt is the phase shift. 

The shaft rotational speed is calculated as: 

𝜔 =
60

∆𝑡1𝑝
 (4) 

where p is the number of pulses per shaft 

revolution and t1 is the pulse period. 

For a given shaft stiffness and moment of 

inertia, the measurement of the phase shift 

between two pulse trains t and the 

calculation of ω, allow the calculation of shaft 

torque from equations (1)-(3). 

4. Simulation Results  

To validate the proposed approach, simulated 

WT drive train data was created using DNV 

GL’s Bladed software. High speed shaft speed 

and torque data was collected at 20 Hz under 

a mean wind speed of 12m/s with 16% 

longitudinal turbulence intensity. The data was 

resampled to 50 kHz and interpolated to 

create pulse trains for the calculation of shaft 

speed and torque. The resulting algorithm 

response compared to input data is shown in 

Figure 2.  

 
Figure 2: Algorithm response to WT simulation. 

The trend of the input simulated data is 

followed well by the algorithm with a maximum 

percentage error noise associated of ±3%. An 

increase in the re-sampling frequency of the 

input data up to 100 kHz has shown a 

reduction of the noise levels to ± 1.5%, 

suggesting that the sampling frequency and 

subsequent noise were issue requiring further 

investigation.  

5. Test Rig 

Physical testing was performed to verify the 

proposed algorithm. The test rig, illustrated in 

Figure 3, features a 4-pole 5 kW grid-

connected induction generator driven by a 5 

kW 4-pole induction motor.  

 

Figure 3: Test rig schematic diagram. 

The motor shaft speed was varied via an 

inverter drive. The generator was connected to 

a VARIAC in order to vary the stator voltage and 

hence the shaft torque. An in-line torque 

transducer, measuring the shaft torque and 

speed, acted as a reference for comparison 



with the algorithm output. On either side of the 

transducer are the bar codes and optical 

probes used to generate input data. 

6. Experimental Results 

Tests were performed under steady state and 

transient conditions. The shaft speed and 

torque responses were calculated by 

implementing the proposed algorithm in 

MATLAB and compared with the transducer 

measurements. Figure 4 shows results for a 

steady state test at 1600 rpm and -3 Nm 

torque. The algorithm mean speed predictions 

show good agreement with transducer 

measurements with a percentage error of 

0.06% and noise of ±0.3%. The algorithm 

mean torque predictions overestimate the 

transducer measurements by 44% with 200% 

noise. It is believed that the reason for the 

overestimation is due to the large amount of 

noise which occurred when calculating the 

twist, linked to the sampling frequency.  

      (a) 
 

    (b) 

Figure 4: Algorithm speed (a) and torque (b) 

response to steady state conditions of 1600 

rpm and -3 Nm. 

Figure 5 shows results for transient conditions 

obtained by running the shaft up to 1600 rpm 

and smoothly varying the torque from 0 Nm to -

10 Nm and back to 0 Nm. Both algorithm 

speed and torque track the transducer 

measurements well, particularly speed showing 

a percentage error of below 0.1%.  

Figure 6 shows results for transient conditions 

obtained by keeping the generator stator 

voltage constant at 50% of the maximum 

whilst ramping the motor speed from 1525 

rpm to 1750 rpm, holding for 30 s and then 

ramping back to 1500 rpm. The algorithm 

speed shows again good agreement with 

measurements with percentage errors less 

than 0.1%. For torque above 2 Nm, the 

average error was consistently around 25%, 

suggesting a systematic error was present. 

 
    (a)     (b) 

Figure 5: Algorithm speed (a) and torque (b) 

response to shaft torque variations. 

 
    (a)     (b) 

Figure 6: Algorithm speed (a) and torque (b) 

response to motor speed variation at fixed 

generator voltage. 

Figure 7 shows the effects of a step change in 

torque. The shaft speed was initially set at 

1590 rpm and, starting from an initial torque 

of -3 Nm, four torque step changes were 

applied. The algorithm speed and torque follow 

the step changes well and without any timing 

delay. The algorithm predictions show good 

agreement with the measurements, with errors 

lower than 0.1% for the speed and a torque 

mean percentage error of 16-25%. It is 

believed that the torque error is due to 

limitations in the sampling frequency.   

 
    (a)     (b) 

Figure 7: Algorithm speed (a) and torque (b) 

response to step torque inputs. 

Although further investigation is required to 

reduce noise and tune the algorithm, these 



preliminary results show that the proposed 

technique is successful in predicting changes 

in shaft speed and torque and could be a 

viable method for non-intrusive WT CM. 

7. Conclusions 

This paper presents a non-intrusive technique 

for torque measurement on a WT drive train. It 

can be concluded that: 

 Torque measurement is achieved by 

measuring the angle of twist from the 

timing between pulse trains produced by 

two sets of bar codes and optical probes, 

using predetermined shaft torsional 

stiffness and moment of inertia. 

 The proposed algorithm was validated, 

computationally and through physical 

testing, under steady state and transient 

conditions.  

 Unlike conventional torque transducers, 

the proposed approach does not require 

any embedded sensors on the rotating 

shaft, overcoming the majority of problems 

limiting the industrial application of CMSs 

based on shaft torque measurements. 

 

 Future work will focus on further validating 

the method using experimental data and 

developing suitable signal processing 

algorithms for fault detection.  

References 

[1] Fried, L., Sawyer, S., Shukla, S. and Qiao, 

L. (2014). 'Global Wind Report Annual 

Market Update 2013'. GWEC, available at 

http://www.gwec.net/wp-

content/uploads/2014/04/GWEC-Global-

Wind-Report_9-April-2014.pdf, last 

accessed 24th January 2015. 

[2] GWEC. ‘Global offshore’: 

http://www.gwec.net/global-

figures/global-offshore/. Last accessed on 

16/03/15. 

[3] McMillan, D., Ault, G. W. (2007). 

Quantification of Condition Monitoring 

Benefit for Offshore Wind Turbines. Wind 

Engineering. 31(4): 267-285. 

[4] Walford, C. A. (2006). 'Wind Turbine 

Reliability: Understanding and Minimizing 

Wind Turbine Operation and Maintenance 

Costs'. Sandia National Laboratories 

SAND2006-1100, available at 

http://prod.sandia.gov/techlib/access-

control.cgi/2006/061100.pdf, last 

accessed 21st February 2015. 

[5] Yang, W., Tavner, P. J., Crabtree, C. J., 

Wilkinson, M. (2010). Cost-Effective 

Condition Monitoring for Wind Turbines. 

IEEE Transactions on Industrial 

Electronics. 57(1): 263-271. 

[6] Abdusamad, K.B., Gao, D.W., Li, Y. 

Condition monitoring system based on 

effects of electrical torque pulsations of 

wind turbine generators. In PES General 

Meeting | Conference Exposition, 2014 

IEEE, 2014. 

[7] Wilkinson, M. R., Spinato, F., Tavner, P. J. 

(2007). Condition Monitoring of 

Generators & Other Subassemblies in 

Wind Turbine Drive Trains. Proceedings of 

2007 IEEE International Symposium on 

Diagnostics for Electric Machines, Power 

Electronics and Drives (SDEMPED 2007). 

Cracow, Poland. 

[8] Soker, H., Kieselhorst, S., Royo, R. Load 

monitoring on a mainshaft. A case study. 

German Wind Energy Conference DEWEK, 

Wilhelmshaven, 2004.  

[9] Perišić, N., Kirkegaard, P.H., Pedersen, B.J. 

(2015). Cost-effective shaft torque 

observer for condition monitoring of wind 

turbines. Wind Energy. 18: 1-19. 

[10] Friswell, M.I., Penny, J.E.T., Garvey,  

S.D., Lees, A.W. (2010). Dynamics of 

Rotating Machines. Cambridge University 

Press. 

[11] Sue, P., Wilson, D., Farr, L., 

Kretschmar, A.(2012). High precision 

torque measurement on a rotating load 

coupling for power generation operations. 

In Instrumentation and Measurement 

Technology Conference (I2MTC), 2012 

IEEE International. 


