
  

  

I. INTRODUCTION 

The introduction of LIDAR based wind field sensing 
technology suitable for mounting on a turbine has prompted 
researchers to increase turbine controller performance 
beyond that provided by feedback only control. This increase 
in control performance translates to reduced speed variance, 
reduced loading and reduced actuator usage leading to 
reduced costs of energy. Model Predictive Control (MPC) is 
a candidate method to utilize future wind speed data to 
control for multiple control objectives[1]. The optimization 
can include system constraints, system nonlinearities, 
simultaneously control multiple actuators to achieve multiple 
control objectives and incorporate information about future 
disturbances such as that supplied by LIDAR; all of which 
make this control framework extremely applicable to the 
wind turbine application.   

Recently MPC methods utilizing future disturbance 
information have been investigated [2]–[4], showing 
reductions in extreme and fatigue loading and an increase in 
generator speed control performance. These studies indicate 
promising results however they are often obtained relative to 
a simple baseline controller and do not test the robustness of 
the methods in the presence of sensor noise and delays – key 
concerns for commercial deployment. 

In this work we present comparisons of MPC controller 
performance when using LIDAR feedback under realistic 
measurement conditions (noise and delays) and against a 
state-of-the-art baseline controller. Key features of this 
implementation are: the use of an Unscented Kalman Filter 
(UKF) for state estimation; short prediction horizons to 
reduce computational burden and loop shaping of control 
inputs to help tune the controller response. The performance 
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of controllers is tested on a high fidelity Bladed model of a 
7MW next generation wind turbine concept with a 160m 
rotor diameter, used for extensive cost of energy calculations 
by DNVGL[5]. 

Simulation results demonstrate a reduction in generator 
speed variance; a tower fore-aft fatigue load reduction; and a 
pitch actuator duty reduction in above rated wind conditions 
when using an MPC controller with LIDAR feedback.  

II. APPROACH 

A. Reduced Order Linear Parameter Varying Model 

The wind turbine can be described by a reduced order 
nonlinear model which captures the dynamics relevant to the 
controller behavior: 
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where the δ, ωg, x, θc, and Qg represent the system states: 
LSS torsional deflection, generator speed, tower top fore-aft 
position, collective blade pitch angle and generator torque 
respectively; Qa, FT, θcd, and Qgd represent system inputs: 
aerodynamic torque on the rotor, thrust force on the rotor, 
collective pitch angle demand, and generator torque demand; 
Ir is the rotor inertia (referred to the LSS), Ig is the generator 
and drivetrain inertia (referred to the high speed shaft 
(HSS)), N is the gearbox ratio, cdt is the LSS torsional 
damping constant, kdt is the LSS torsional stiffness constant, 
cT is the modal damping of the tower flexibility, kT is the 
modal stiffness of the tower flexibility, mT is the modal mass 
of the tower flexibility, ξ is the pitch actuator damping ratio, 
ω is the pitch actuator frequency and τg is the generator 
torque time constant.  

The model can be further simplified to reduce computational 
burden for MPC by representing the system as a Linear 
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Parameter Varying (LPV) model parameterized by only by 
Ve and linearizing along the steady state operating trajectory: 
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This model maintains a degree of the nonlinearity through 
parameter varying coefficients, but allows the MPC 
optimization to be performed using the same tools as a linear 
system, reducing computational burden. 

B. Simulation Model 

The Bladed model of the 7MW wind turbine includes six 
modes for each blade (four flapwise and two edgewise 
modes) and seven modes for the tower (three fore-aft, three 
side-side and a torsional modes). The model also includes a 
simulated nacelle mounted continuous wave LIDAR 
scanning 50 equally spaced points on the circumference of 
circle with radius 55m, 95m upwind of the turbine at a 
sample time of 20ms (1s per full scan). The LIDAR returns 
line-of-sight data which is processed by the controller to 
recreate Ve over the entire prediction horizon for use by the 
MPC. The reconstruction of Ve from scanned points is 
vulnerable to error due to: sampling a single point at a time, 
sampling only a portion of the rotor area, the need to 
estimate the transport model of sampled data from the 
measurement plane towards the rotor plane and the 
decorrelation of the wind as it moves from the measurement 
plane to the rotor plane. All sources of error except the 
decorrelation are present in this investigation. 

C. Baseline Controller 

The state-of-the-art classically designed baseline 
controller used for this investigation has been heavily 
optimized to achieve significant reductions in cost of 
energy[5]. A schematic of the complete baseline control 
architecture can be seen in Fig 1. 
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Figure 1.  Schematic of baseline control architecture 

D. Model Predictive Control 

MPC controllers determine control inputs by optimizing 
a cost function of the system online. In this study an 
approximation of a quadratic infinite horizon cost function is 
used for optimizations[7]: 
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where Q is the state deviation penalty, R is the input 
deviation penalty, S is the cross deviation penalty and P is 
the terminal cost weighting. The cross term, S, allows 
additional tuning outputs to the control model leading to 
greater flexibility in loop shaping. The minimization of J can 
be reduced to a quadratic program (QP) by using a discrete 
version of  (2)[2]. In the implementation used for this work 
we have used the  ‘closed-loop paradigm’ [8] method for 
numerical stability and predictability.  

We assume for this study that only typical, noisy turbine 
measurements are available to the controller, requiring state 
estimation. Noise and delay characteristics of the turbine IO 

are summarized in Table 1.  (ωg, T
x&& , θc and Qg). We use a 

Square Root Unscented Kalman Filter (UKF) to construct 
state estimates from measurements[9]. The UKF is 
particularly suited to the turbine estimation problem as it 
allows for stable estimation of nonlinear systems and it 
provides accurate estimation of mean and covariance data for 
nonlinear systems in contrast to the more commonly used 
Extended Kalman Filter. A schematic of the complete MPC 
control architecture is shown in Fig. 2. 
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Figure 2.  Schematic of MPC architecture 

TABLE I.  IO SIGNAL CHARACTERISTICS  

Signal ωg Tx&&  θc Qg θcd Qgd 

Rectangular 
half-width 
noise level 

0.45 

rpm 

0.005

ms-2 
0.1° 

3500

Nm 
0Nm 0Nm 

Delay 0.02s 0.02s 0.02s 0.02s 0.04s 0.06s 

 



  

III. RESULTS 

Initially four controllers have been compared in a 600s 
turbulent wind simulation: MPC without LIDAR based 
measurements (MPC); MPC with LIDAR based 
measurements (MPC+LIDAR); MPC with ideal Ve 
measurements (MPC+Ideal LIDAR) and the baseline 
controller. The MPC with ideal Ve allows quantification of 
performance loss through errors in reconstructing Ve from 
realistic LIDAR measurements. 

The simulations have been run with 3D turbulent full 
field wind with a mean speed of 16ms

-1
, created according to 

IEC61400-3 design standards for normal turbulence[10]. 
Hard constraints are placed on the inputs: 
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All controllers used a sample time of 0.02s and the MPC 
controllers used a prediction horizon of 30 steps (0.6s), just 
above the minimum necessary to guarantee a feasible 
optimization in light of the pitch input position and 
acceleration constraints (0.57s).  

To enable a fair comparison, an MPC controller with no 
LIDAR input is tuned to perform as closely to the baseline as 
possible. The same controller was then given LIDAR based 
reconstructions of Ve over the entire prediction horizon 
(MPC+LIDAR) and perfect knowledge of Ve over the 
prediction horizon (MPC+Ideal LIDAR).  

The results for all controllers relative to the baseline are 
summarized in Table 2. The MPC+Ideal LIDAR case shows 
the most significant performance increases with a reduction 
from 142% to 69% in generator speed standard deviation, a 
reduction from 91% to 85% in total pitch travel and a 
reduction from 104% to 90% in tower fatigue loading. Using 
LIDAR based reconstructions of Ve we see performance 
losses relative to the ideal case, however there is still a 
reduction in the generator speed variation from 142% to74% 
and a tower load reduction from 104% to 94%.  

As the rotor speed objective is often binary, a greater 
reduction in loading for the same speed control performance 
is preferred. In the presented paper we will include results 
comparing MPC controllers with LIDAR feedback detuned 
to have similar speed control to the baseline case to 
investigate the resulting load reduction.  

IV. CONCLUSION 

An MPC controller has been shown to reduce rotor speed 
variance and tower fore-aft fatigue DELs relative to a state-
of-the-art feedback only baseline controller on a next 
generation 7MW wind turbine concept.  

The investigation shows that the method is robust to 
practical implementation issues such as noisy and delayed 
IO, realistic LIDAR measurements, short prediction 

horizons, reduced order LPV models and relying on state 
estimation. 

V. LEARNING OBJECTIVES 

The following learning objectives are intended for 
conference attendees: 

• Become familiar with LIDAR technologies; 

• Become familiar with MPC for wind turbines; 

• Understand the practical challenges for 
implementing MPC for wind turbines; and 

• Understand the potential benefits of adopting 
LIDAR assisted MPC for wind turbine control 
commercially. 

TABLE II.  CONTROLLER PERFORMANCE NORMALISED TO BASELINE 

Controller MPC 
MPC + 
LIDAR 

MPC + Ideal 
LIDAR 

Max. Gen. 
Speed 

104% 98% 99% 

Std. Dev. Gen. 
Speed 

142% 76% 69% 

Total Pitch  
Travel 

91% 90% 85% 

Tower Base 
Fore-Aft DEL 

104% 94% 90% 
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