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1 Introduction

Power curves are typically constructed using simultaneous wind-speed and power
measurements, according to the IEC 61400-12-1 standard [1]. These time series
of wind speed and power are typically sampled at 1 Hz. To ensure sufficient cor-
relation between both time series, the 1 Hz samples are averaged over a certain
time interval, τ , as a pre-processing step, before the binning into a power curve.
According to the standard, τ should be 10 minutes for large wind turbines and
1 minute for small ones. The power curve obtained from a given data set will
obviously depend on the choice of averaging interval, but the difference is small
[2].

To predict the annual energy production (AEP), the power curve is com-
bined with a wind speed probability function (Rayleigh, Weibull) or on-site
measurements. These wind data also depend on the averaging time, as pointed
out by Brothers and Arthur [3]. Elliott and Infield [2] recently showed that
an inconsistent averaging time for the power curve and the wind data causes a
systematic error in the estimated AEP. Yet often hourly wind speed data (e.g.
from meteorological stations) are combined with 1’-averaged power curve data
for small wind turbines [4–6] and 10’- data for large ones [7]. In this paper, we
suggest a technique to compensate the power curve for differences in averaging
time between the power curve and the wind data.

2 Approach

Our compensation of the power curve for inconsistent τ is inspired by the cor-
rection for turbulence intensity (TI) [8–10]. The TI is defined as the average
standard deviation per bin divided by the mean wind speed in the bin. These
standard deviations are the square root of the variances obtained during pre-
processing, when the 1 Hz samples are averaged over τ . The TI thus clearly also
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Figure 1: Effect of increased averaging times on the wind speed normalised
histograms (left) and the power curve (right). The averaging times shown are 1
minute (circles), 2 minutes (crosses) and 5 minutes (pluses). The mean power
output (integral of the product of the like curves left and right) is always the
same.

depends on τ : when τ increases, more variation can be expected in the interval,
and thus TI will be higher. On the other hand, the variance of the ensemble of
τ -averaged data points will be lower.

These effects are illustrated in Figure 1, showing power curves for three
different averaging times: 1, 2, and 5 minutes, calculated from one set of simu-
lated uncorrelated Weibull-distributed wind data and corresponding power data.
(One should note that we excluded autocorrelation in the wind to overemphasize
the effect of the averaging time variation.) The increase in τ is very similar to an
increase in TI. The question that this article addresses then is: can we compen-
sate for differences in averaging time in a similar way that we can compensate
for turbulence effects?

3 Main body

For a given τ , the TI can be calculated from wind speed data provided the
data are available at sufficiently-high sample frequency, say 1 Hz. The TI can
be calculated either directly (through averaging) or indirectly via the power
spectral density function (PSD) of the wind data [8, 11].

When long-term high-frequency wind data are available, we suggest to av-
erage the data with an averaging time equal to that of the power curve. Often,
however, only low-frequency (e.g. hourly) data are available for a long period.
In that case, we propose to perform a short-term high-frequency wind speed
measurement campaign to derive the PSD of the site. With this PSD, the TI
of the site can be derived for any τ , and the power curve can be compensated
to match with the long-term wind data.

We illustrate our approach for two sites, A and B, where 10 days of data
sampled at 1 Hz and 4 Hz were available. We deliberately selected two sites with
distinct wind climates: one with a very low wind speed and high turbulence, and
one with a higher mean and lower turbulence. Site A has a mean wind speed of
3.1 m/s (at 15 m height) over the measured period and a high TI (32.2 % at 10
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minute averaging time). Site B has a decent mean wind speed of 6.7 m/s (at 27
m height) over the period considered, and a markedly lower TI (6.9 %, again at
10 minute averaging time).
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Figure 2: Mean power estimate as a function of the averaging time used. The
line with circles shows the estimate with the power curve corrected from the
power spectral density function. Site A is left, site B right.

Figure 2 shows the estimated mean power as a function of the averaging
time τ of the wind data, based on a power curve with a fixed τ of 1 minute.
Simply correcting for TI already yields a considerable difference (compare the
shift between the red and blue curves at τ = 1’). For larger τ , and using
the consistent τ = 1’ for wind and power as benchmark (i.e. the black line
originating from the blue curve at τ = 1’), the uncorrected estimate decreases
(the downward slope of the red curve) as this estimate is not compensated
for the increasing averaging time. The compensated power curves are much
more horizontal, as well for the direct method (blue curve) as for the indirect
method via the PSD (green curve). The compensated power curve is clearly
more robust for changes in τ . Yet the method still leaves a residual difference
for the compensated estimates (blue and green curves versus the black line),
especially at higher τ .

4 Conclusions

In this article, we show how a power curve can be compensated for an incon-
sistency in averaging time, τ , between wind speed data and the power curve.
This compensation really is a correction for the turbulence intensity (TI), which
varies with averaging time in a systematic way.

When long-term high-frequency wind data are available, we suggest to av-
erage the data so that the averaging times of the wind data and power curve
match. When only low-frequency data are available, we propose to perform
a short-term high-frequency wind speed measurement campaign to derive the
power spectral density (PSD) function of the site. With this PSD, the TI of the
site can be derived for the τ of the power curve, and the power curve can be
compensated to match with the long-term wind data.
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5 Learning objectives

• Understand how inconsistent averaging times between power curve and
wind data affect energy yield predictions.

• Compare the effects of turbulence and averaging times on power curve
estimates.

• Evaluate how power curves can be compensated for differences in averaging
time when compensating for turbulence.
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