Back to the programme printer.gif Print



Wednesday, 12 March 2014
16:30 - 18:00 Storage & grid integration
Hardware Technology  


Room: Tramuntana
Session description

As wind energy becomes an increasingly important power supply technology in many countries, the wind energy sector has to keep on working in collaboration with system operators and develop the technological solutions that are required. This session will present new developments that will consolidate wind energy as a major element of electricity systems: wind turbine group (WTG) hardware and software, new control strategies from WTG to global power systems as well as storage solutions.

Learning objectives

  • Identify new WTG capabilities for grid operation support
  • Analyse new control strategies at both WTG and wind farm level
  • Understand how wind energy will/can be managed in future scenarios and at high penetrations
  • Examine what is at stake to consolidate wind energy as the future leading energy source
  • Identify and analyse electricity storage business models
Lead Session Chair:
Luis Polo, AEE, Spain

Co-chair(s):
Santiago Arnaltes, University Carlos III of Madrid - UC3M, Spain
Graeme Hawker University of Strathclyde, United Kingdom
Co-authors:
Graeme Hawker (1) F P Laura Kane (1) Simon Gill (1) Ivana Kockar (1) Keith Bell (1)
(1) University of Strathclyde, Glasgow, United Kingdom

Printer friendly version: printer.gif Print

Presenter's biography

Biographies are supplied directly by presenters at EWEA 2014 and are published here unedited

With 9 years experience in wind energy, Graeme is a Chartered Scientist working as a Researcher in Future Energy Systems at the Institute for Energy and Environment at the University of Strathclyde, Glasgow.

Abstract

Commercial integration of storage and responsive demand to facilitate wind energy on the Shetland Islands

Introduction

The Northern Isles New Energy Solutions (NINES) project seeks to implement Active Network Management (ANM) on the Shetland Islands in a manner which reduces customers’ energy consumption, lowers peak demand and facilitates an increase in the proportion of electricity from wind, in order to take advantage of the unique wind resource of the islands. This presentation focuses on the commercial frameworks and trading arrangements necessary to permit additional wind capacity onto the islanded network through the active use of storage and responsive demand technologies.

Approach

The network is modelled using a Dynamic Optimal Power Flow (DOPF) framework, which allows the unit scheduling of different combinations of generation, storage and demand to be optimised according to different optimisation goals. This is used as a foundation to explore the value of wind energy and storage in meeting the long-term goals of the network, the forms of trading and markets which may be used to contract services, and the potential for responsive demand to facilitate different forms of connection agreements and curtailment strategies for new wind farms.

Main body of abstract

In modelling the Shetland network using Dynamic Optimal Power Flow (DOPF), the optimum unit commitment schedule is determined across a daily horizon for different network topologies, including variable levels of wind generation, storage and demand-side response - primarily storage heaters and water tanks controllable by the Distribution System Operator via Active Network Management. This informs the level of wind generation which may be accepted onto the network, and allows the creation and testing of commercial agreements both for wind generators keen to utilise the unique resource of the islands, as well as allowing third-party operation of storage, and reducing the peak energy demand of domestic consumers. This allows a greater level of demand to be supplied by non-thermal sources through the time-shifting of demand against the availability of the wind resource. Support of the grid through reserve and response is considered in the context of maintaining system stability, with the aim of procuring services through third-party contractual arrangements. Data collected from the operational history of the islands and technology trials demonstrate the feasibility of these approaches and their potential applicability to other constrained distribution networks with the potential for high levels of wind generation.

Conclusion

The data from trials of domestic storage equipment and modelling of wind curtailment demonstrate quantitatively the ways in which commercial integration of modern storage and responsive demand can be used to increase the utilisation of wind energy on islanded networks, which may often have increased renewable resources but limited grid capacity. It is shown that there are a number of trading and connection agreements which can be used to contract for generation and ancillary services to meet these goals.


Learning objectives
How storage and responsive demand may be commercially utilised to facilitate wind on constrained networks; the forms of connection agreement which may be used for wind farms on future grids; modelling techniques for optimising wind utilisation in combination with storage and demand technologies.