Objective:
to analyse and further develop the methodology to assess the impact of wind on power systems

First phase 2006-08, 11 countries + EWEA participate
Second phase 2009-11, 14 countries + EWEA participate.

- Provide an international forum for exchange of knowledge
- State-of-the-art: review and analyse the studies and results so far
 - methodologies and input data, system operation practices
 - Final report 2006-08 published in July 2009
- Formulate guidelines:
 - recommended methodologies and input data when estimating impacts and costs of wind power integration
 - Quantify the impacts of wind power on power systems
 - range of impacts/costs; rules of thumb

www.ieawind.org/AnnexXXV
Operating Reserves different in all systems –
General definition

- “The real power capability that can be given or taken in the operating timeframe to assist in generation and load balance and frequency control”
- Does not include reactive power reserve and planning reserve
- Types of operating reserves differentiated by:
 - Direction of response (up/down)
 - Type of event
 - Timescale

<table>
<thead>
<tr>
<th>Operating Reserve</th>
<th>Fast</th>
<th>Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulating Reserve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Following Reserve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency Reserve</td>
<td>Instantaneous</td>
<td>Non-instantaneous</td>
</tr>
<tr>
<td>Frequency Responsive Reserve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement Reserve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp Reserve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Increase in short term reserve requirements due to wind

- Reserve categories that are impacted by wind power:
 - Wind power not dimensioning contingency reserve (instantaneous event) but will be seen in non-event and slow event reserve
 - Time scale: Regulating/Frequency responsive (automatic, primary, instantaneous) reserve not much affected but more the Load following/ramping reserves (10 minutes…hours)
- Approaches for estimating the impact of wind power
 - No general rules in how the non-event reserve is dimensioned
 - Compare the uncertainty and variability before and after the addition of wind generation wind and adjust the appropriate reserves while trying to maintain the same system quality of service such as reliability

Deterministic approach

- Often the first approach - simple
- Add wind uncertainties to existing reserves
 - no correlation between uncertainties of generation outages/load/wind \(\rightarrow\) reserve can be overestimated (costly)
 - This can be mitigated by taking f.ex. 85 % of max, or by taking a vector sum

\[
\begin{align*}
\text{Max load uncertainty} & \quad \text{Max wind uncertainty} \\
\text{Largest contingency} & \quad \text{Max wind uncertainty} \\
\text{Largest contingency} & \quad \text{Max load uncertainty}
\end{align*}
\]
Step changes: from load to net load (load-wind)
Simple approach to estimate reserve requirements

- Example 10% wind penetration
 - 4000 MW wind, max variation of wind power: 600 MW (15%)
- Increase in 15-min-reserve:
 - As increase in confidence level of 4\(\sigma\): 76 MW (2%)
 - As max increase in variations: 152 MW (4%)
- Same methodology can be applied to forecast errors, and different time scale reserves
- Not gaussian \(\rightarrow\) Exceedence level instead of 4\(\sigma\) can be applied

Estimating increase in reserve requirements – combining probabilistic density distributions of uncertainties: forecast errors and outages

Challenge: wind not gaussian (tails)
Solution: Using empirical forecast errors

Fraunhofer IWES

Legend:
- day-ahead
- 2h-shortterm
- 3h-shortterm
Calculating the risk with different amounts of reserve for different wind penetration levels

Risk that generation plus reserves (B.R) will not suffice to meet the load at a given time

Some case study results
Comparison of probabilistic and deterministic reserve allocation (Spain REE)

- Data from day-ahead technical congestion management, 120 days
- Difference between the reserves calculated and real reserves that were used at the hourly peak load of that day
- For the probabilistic calculation a confidence interval of 99% is used – lower amount of reserve allocation, but enough in all of the 120 days

We@ Sea Study - the Netherlands

- Studied changes to unit commitment, adequacy of ramping capability
- Wind power estimated from detailed meteorological data
- Combined with load data from Dutch TSO
- Quantified 99% exceedence value of additional load following reserve

System size: 22 GW
All Island Grid Study - Ireland

Wind capacity:
- Portfolio 1 – 2000 MW
- Portfolio 2-4 – 4000 MW
- Portfolio 5 – 6000 MW
- Portfolio 6 – 8000 MW

(1) hourly power balance assuming perfect forecasts and no forced outages, against

(2) hourly power balance considering scenarios of wind and load forecast errors as well as forced outages.

Replacement reserve target = 90th percentile of deviation between power balances

Impact of forecast error time scale - Germany

German 2020 scenario:
- 35 GW onshore + 15GW offshore
- 2275 full load hours
- Improved wind power forecasts (30-40% reduction of the MAE)

Reduction of the increase of reserve (in % of wind penetration)
Including only one additional month of (large) historical forecast errors

January 2007: Storm event „Kyrill“ leads to very large forecast errors due to storm cut-offs of many wind turbines

HydroQuebec computation of balancing reserves (BR) for forecast uncertainties (1-48 hours ahead)

Additional reserve to maintain original risk

Risk and \(\Delta BR \) for BR = 1000 MW

Risk [\%] with wind generation

\(\Delta BR \) [MW]

<table>
<thead>
<tr>
<th>Lead Time [h]</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with wind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without wind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There are more up-reserves available in the high renewables case than in the no wind/solar case because the additional renewable energy generation causes many conventional units to be backed down.

- Net load variability increases with wind.
- Requirement is a function of both load level and wind level.
Some general results on short term reserves

- Wind starts to dominate the variability/uncertainty in higher penetrations → more reserve requirements
 - Large variations or forecast errors of wind power are rare events → dynamic allocation (low wind situations → low impact)
- The reserve requirement needs are often estimated available from existing conventional power plants
- Larger balancing areas and using transmission to neighbouring regions to share balancing will reduce the requirements
- Intra-day markets / correcting largest errors after day-ahead forecasts for wind power will reduce need for reserves
- Work in progress for comparing the methodologies and results

IEA WIND Task 25:
Design and operation of power systems with large amounts of wind power

www.ieawind.org

Final report 2006-08 published in July 2009

<table>
<thead>
<tr>
<th>Country</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Hydro Quebec (A.Robitaille); Manotoba Hydro (T. Molinski); Natural Resources Canada (S.Lalande);</td>
</tr>
<tr>
<td>Denmark</td>
<td>RisØ-DTU (Peter Meibom); Energinet.dk (Antje Orths)</td>
</tr>
<tr>
<td>EWEA</td>
<td>European Wind Energy Association (Frans van Hulle)</td>
</tr>
<tr>
<td>Finland</td>
<td>VTT (Hannele Holttimen)</td>
</tr>
<tr>
<td>Germany</td>
<td>Fraunhofer IWES (Bernhard Lange); TSO Amprion (Bernhard Ernst)</td>
</tr>
<tr>
<td>Ireland</td>
<td>ECAR/UCD (Mark O’Malley); TSO Eirgrid</td>
</tr>
<tr>
<td>Italy</td>
<td>Terna (Enrico Maria Carlini)</td>
</tr>
<tr>
<td>Japan</td>
<td>AIST (Junji Kondoh)</td>
</tr>
<tr>
<td>Norway</td>
<td>SINTEF (John Olav Tande); TSO Statnett (T. Gjengedal)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>we@sea, ECN (Jan Pierik); TUDelft (M.Gibescu)</td>
</tr>
<tr>
<td>Portugal</td>
<td>INETI (Ana Estanquero); TSO REN (João Ricardo); INESC-Porto (J. Pecas Lopes); UTL-IST (Ferreira Jesus)</td>
</tr>
<tr>
<td>Spain</td>
<td>University of Castilla La Mancha (Emilio Gomez Lázaro)</td>
</tr>
<tr>
<td>Sweden</td>
<td>KTH (Lennart Söder)</td>
</tr>
<tr>
<td>UK</td>
<td>DG&SEE (Goran Sirbac), TSO National Grid</td>
</tr>
<tr>
<td>USA</td>
<td>NREL (Brian Parsons); UWIG (Charles J. Smith)</td>
</tr>
</tbody>
</table>