IEA Wind Annex 30 - OC4 Project

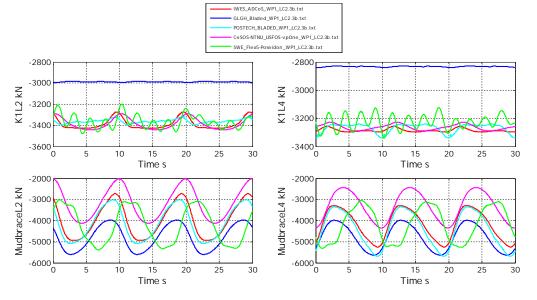
The Offshore Code Comparison Collaboration Continuation

Fabian Vorpahl

Wojciech Popko

Simulation and assessment of wind turbines

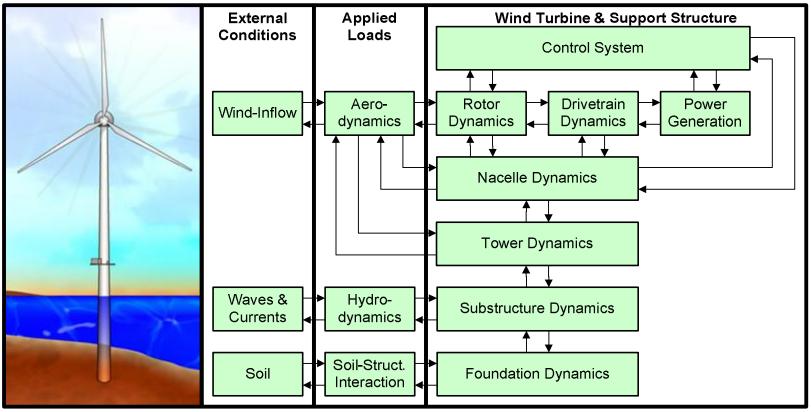
Fraunhofer Institute for Wind Energy and Energy System Technology (IWES)


Brussels, March 16, 2011

© Fraunhofer IWES

Outline

- OC4 project background and overview
- OC4 project organization
- Phase I: Turbine on jacket substructure
- Phase II: Turbine on floating semisubmersible



Simulation and assessment of wind turbines

OC4 Project Background and Overview: Fully-coupled Simulation

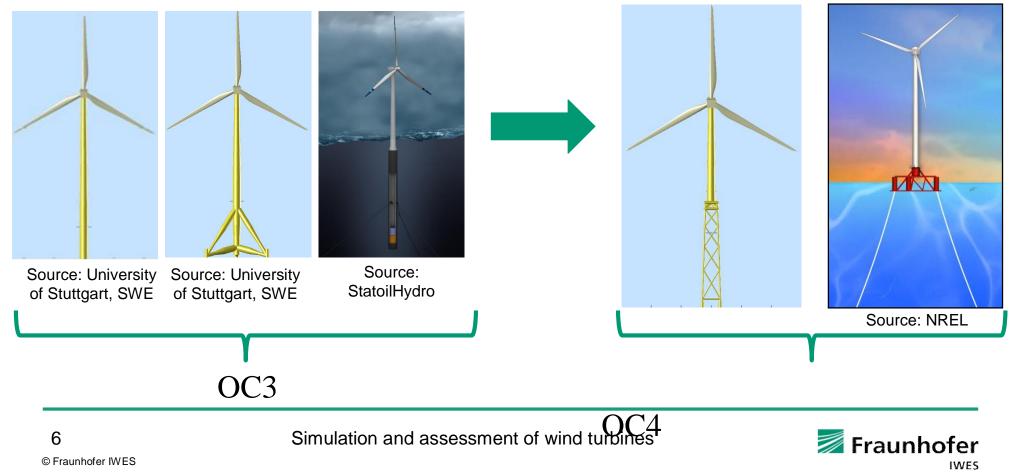
Aero-hydro-servo-elastic tools currently used for loads simulation

Source: NREL

OC4 Project Background and Overview: Verification / Validation Problem

- Fully-coupled tools are used for loads simulation
- Turbines are certified based on the calculated loads and components are designed based on those loads
- Offshore Wind Turbines are further developed (Turbine size, new Support Structure types...)
- Tools are further developed to account for characteristics of new Components / Designs (wave loads on 'braced' structures)
- Tools must continuously be verified and validated because of:
 - Importance of the simulated loads and
 - New challenges for tools / new features of tools

Δ


OC4 Project Background and Overview: Verification / Validation Problem

- Straightforward solution: Tool validation against measured data
- Drawbacks:
 - Immense effort of large measurement campaigns
 - Bottleneck due to confidential data necessary for model setup
 - Complex real world load cases make it hard to trace back errors in codes / models
- Verification in code benchmark projects
 - OC3 project as code verification project dedicated to Offshore Wind Turbines (IEA Annex 23, 2005 to 2009), focused on different support structure types
 - Still open issues and need for further research → setup of OC4 project

OC4 Project Background and Overview: From OC3 to OC4

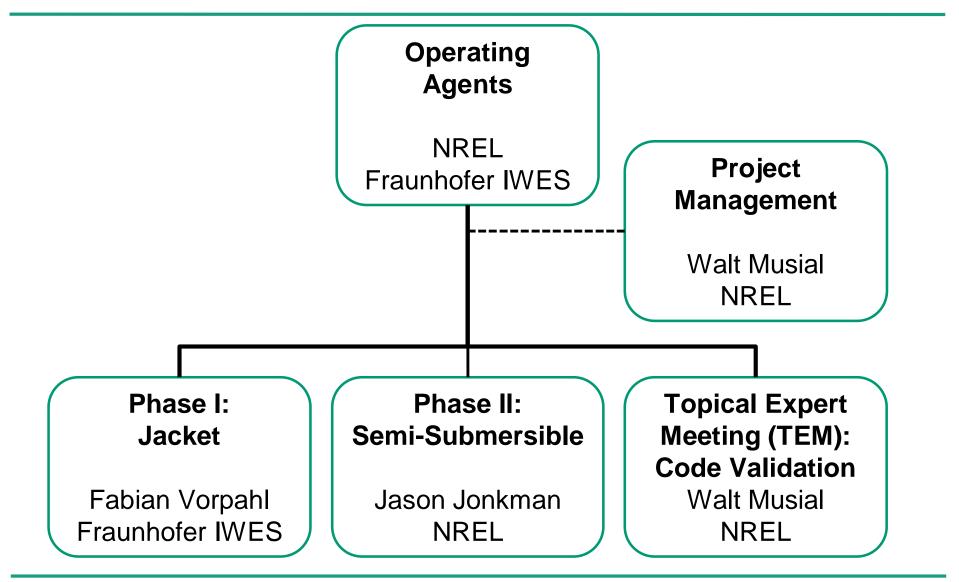
- New support structure types
- Local structural dynamics in jacket
- Complex hydrodynamics calculations for semi-submersible

OC4 Project Background and Overview: Project setup

- New IEA task 30 setup in 2010
 - Only one project in this task: OC4
 - Based on OC3 results and experiences
 - Investigation of new aspects and new structures
- 2 work packages:
 - Phase I Jacket substructure (led by Fraunhofer IWES, Germany)
 - Phase II Semisubmersible (led by NREL, USA)
- 3 years life span
- Including former OC3 participants and new project members

OC4 Project Background and Overview: Goals

- To benchmark and verify the codes in terms of their simulation capabilities of different sub-structures
- To asses the accuracy and reliability of obtained results
- To increase confidence in results and allow for decrease of safety factors
- To predict loads more accurately by reducing uncertainties
- To find out capabilities and limitations of implemented theories
- To refine and investigate existing analysis methods
- To initiate further Industry codes development and their optimization
- To train new analysts how to run and apply codes correctly

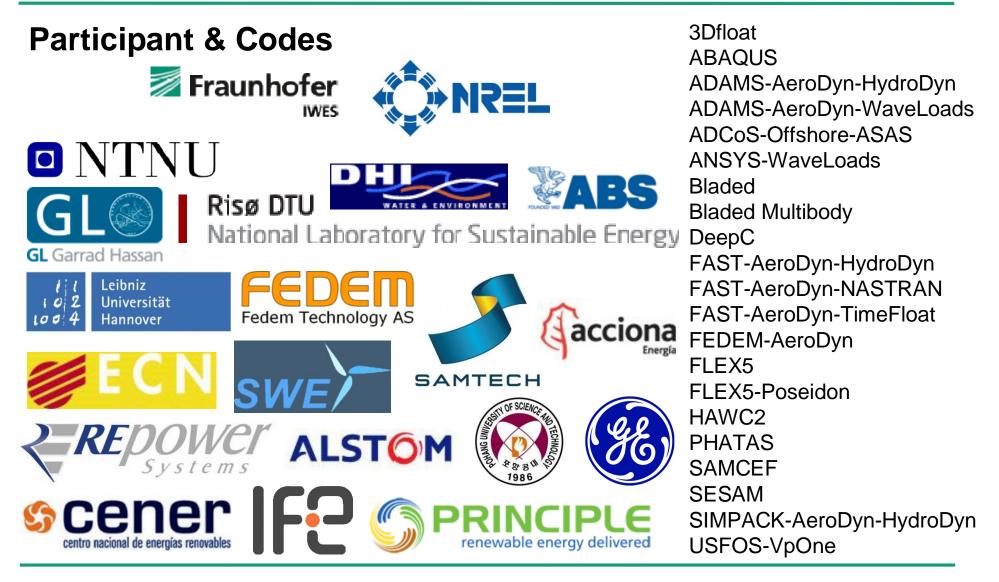


OC4 Project Organization: Activities

- Monthly net-meetings: Ongoing
- Biannual physical meetings: 2 already held
- 1 experts meeting in the 2nd year
- 1 expert-meeting report
- 1 conference paper for each Phase planned
- Final report

OC4 Project Organization: Structure

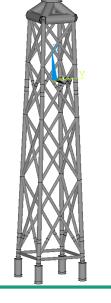



OC4 Project Organization: Country commitments

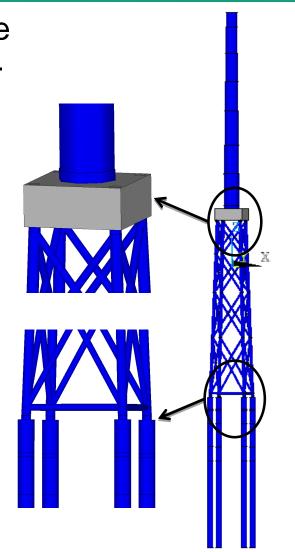
- IEA Wind Task 30's biggest challenge has been getting country commitments
- Currently: 5 countries joined the task
- Netherlands will be joining soon
- Active partners in Korea and Sweden: Commitment expected soon

Response
No response
No response
Considering
Considering
Committed
Declined
Declined
Considering
Committed
No response
Considering
No response
No response
Pending
No response
Pending
Committed
No Response
Committed
Pending
Declined
Declined
Committed

OC4 Project Organization: Partners and codes



OC4 Project Organization: Schedule


ID	Task Name	—	2010)		2011	2012	2013						
			JJF					SONDJFMAMJJAS						
1	ExCo Approval of Annex 30	• • `	11/9											
2	Receive Commitment Letters		•	2/1										
3	Receive Funds			3/31										
4	Jacket Code Comparison - Work Package 1													
5	Publish Paper or Report on Jacket						1/29							
6	Establish Floating Design Concept													
7	Floating Platform - Work Pakage 2													
8	Report on Floating Structure							♦ 4/28						
9	Code Validation Data Comparison Workshop											9/22		
10	Report on Workshop					•	12/18							
11	Final Report							♦ 4/30						
12	Kickoff Meeting #1			4/30										
13	Meeting #2				11/									
14	Meeting #3					♦ 5/2								
15	Meeting #4					♦ 1	0/31							
16	Meeting #5						♦ 4/30							
17	Meeting #6							♦ 10/31						
18	Meeting #7							♦ 4/30						

- Support structure with jacket sub-structure designed by Rambøll A/S for the NREL 5-MW Reference Turbine in the UpWind project (WP4)
- Four legged, fixed bottom jacket substructure with piles, transition piece and tower defined
- Concrete Transition Piece (TP) and 4 central piles
- Water depth of 50m
- Elevation of the yaw bearing at 88 m from MSL

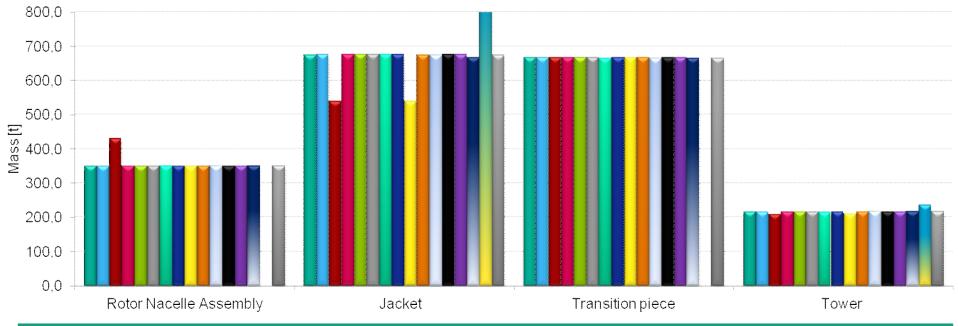
	Load	Enabled DOF	Wind Conditions	Wave Conditions	Analysis Type	Initial Conditions
Phase I project plan:	Case	None	No air	Still water	Static simulation in- cluding gravity and buoyancy to MSL	
Implementation of the UpV	2.2	None, Rotor speed and blade pitch via con- troller	Steady, uniform, no shear: $V_{hub} = 8 \text{ m/s}$	No water	Periodic time-series solution	$\begin{aligned} \Omega &= 9 \text{ rpm} \\ \Phi &= 0 \text{ deg} \\ \Theta &= 0 \text{ deg} \end{aligned}$
5MW NREL Reference OV		None	No air	Regular Airy: $H = 6 \text{m},$ T = 10 s	Periodic time-series solution	wave simulation starts from crest at x = 0, y = 0 (global system)
Preliminary check of mass	2.3b	None	No air	Regular stream function (Dean, 9th): $H = 8$ m, T = 10s	Periodic time-series solution	wave simulation starts from crest at x = 0, y = 0 (global system)
Simulation of different loac		None: Ro tor speed and blade pitch via	NTM (Kaimal): $V_{hub} = V_r = 11.4 \text{ m/s}$ $\sigma_x = 1.68 \text{ m/s}$ $\sigma_y = 1.34 \text{ m/s}$ $\sigma_z = 0.84 \text{ m/s}$ $L_{k,x} = 340.20 \text{ m}$	No water	PDFs, DELs, power spectra	$\Omega = 12.1$ rpm $\Phi = 0 \deg$ $\Theta = 0 \deg$
 Eigenanalysis – LC set 1. 		controller	$L_{k,y} = 113.40 \mathrm{m}$ $L_{k,z} = 27.72 \mathrm{m}$ $L_c = 340.20 \mathrm{m}$ Wind shear: $\alpha = 0.14$			
 Rigid offshore wind turbir 	2.4b	None: Ro- tor speed and blade pitch via controller	NTM (Kaimal): $V_{hub} = 18 \text{ m/s}$ $\sigma_x = 2.45 \text{ m/s}$ $\sigma_y = 1.96 \text{ m/s}$ $\sigma_z = 1.23 \text{ m/s}$ $L_{k,x} = 340.20 \text{ m}$ $L_{k,y} = 113.40 \text{ m}$ $L_{k,z} = 27.72 \text{ m}$ $L_c = 340.20 \text{ m}$	No water	PDFs, DELs, power spectra	$\begin{split} \Omega &= 12.1\text{rpm} \\ \Phi &= 0\text{deg} \\ \Theta &= 0\text{deg} \end{split}$
 Land based turbine – LC 						
 Flexible offshore structure 	2.5	None	Wind shear: $\alpha = 0.14$ No air	Irregular Airy: $H_s = 6m$, $T_p = 10$ s, Pierson-Moskowitz wave spec-	PDFs, DELs, power	
 Fully-fexible OWT – LC s 	ະເບ	0.^		trum	Spectra	

Accomplished tasks:

- Implementation of the UpWind jacket sub-structure and the 5MW NREL Reference OWT
- Preliminary check of masses and eigenfrequencies
- Simulation of different load cases with increasing complexity
 - ✓ Eigenanalysis LC set 1.X
 - Rigid offshore wind turbine LC set 2.X (in process, partially done)
 - Land based turbine LC set 3.X
 - Flexible offshore structure LC set 4.X
 - Fully-fexible OWT LC set 5.X

Exemplary results (15 partners):

✓ Preliminary check of masses


- Fraunhofer IWES / ADCoS-Offshore
- POSTECH / Bladed Classic
- ABS / ANSYS-BModes
- Fedem Technology AS / FEDEM Windpower
- LUH / Adams

■IFE/3Dfloat

- SWE / Flex-Poseidon
- GLGH / Bladed Classic
- CeSOS-NTNU/USFOS-VPOne
- 💵 LUH / Flex5-Poseidon
- REpower / Flex-ASAS

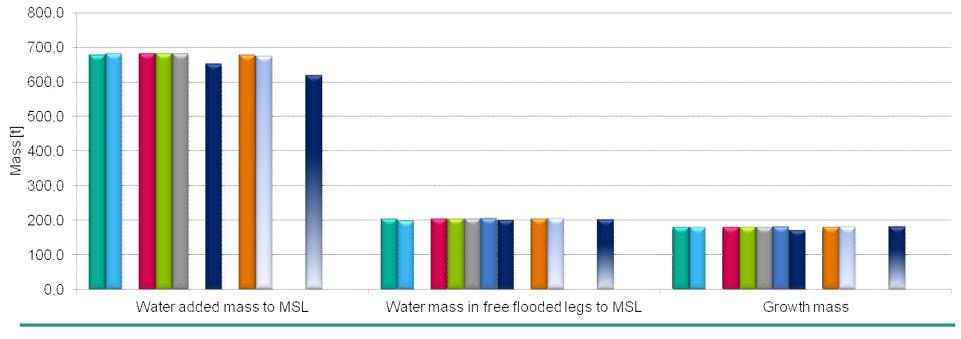
Risø DTU / HAWC2

- GLGH / Bladed MultiBody
- ECN-WMC / Phatas WMC-fem2
- LUH / Abaqus
- SAMTECH / S4WT

Simulation and assessment of wind turbines

Exemplary results:

✓ Preliminary check of masses

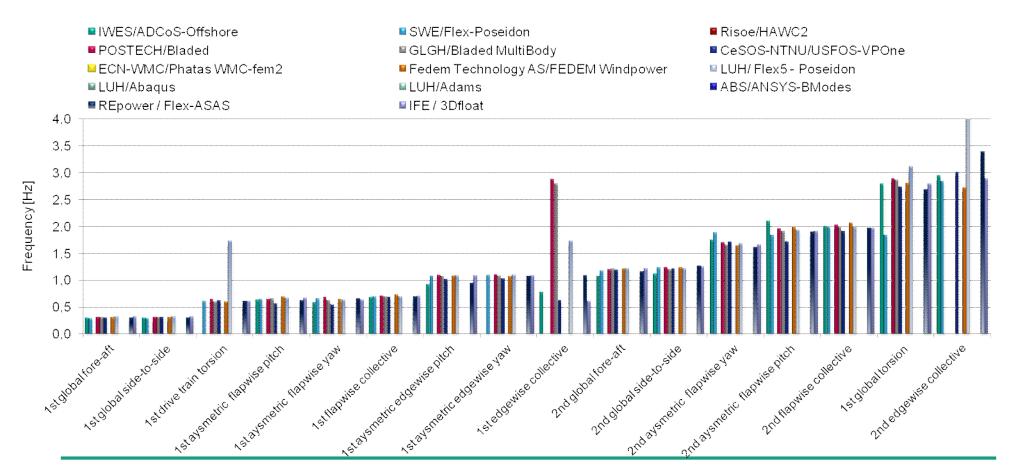

- Fraunhofer IWES / ADCoS-Offshore
- POSTECH / Bladed Classic
- ABS / ANSYS-BModes
- Fedem Technology AS / FEDEM Windpower
- 🛚 LUH / Adams

■IFE/3Dfloat

- SWE / Flex-Poseidon
- GLGH / Bladed Classic
- CeSOS-NTNU/USFOS-VPOne
- LUH / Flex5-Poseidon
- REpower / Flex-ASAS

Risø DTU / HAWC2

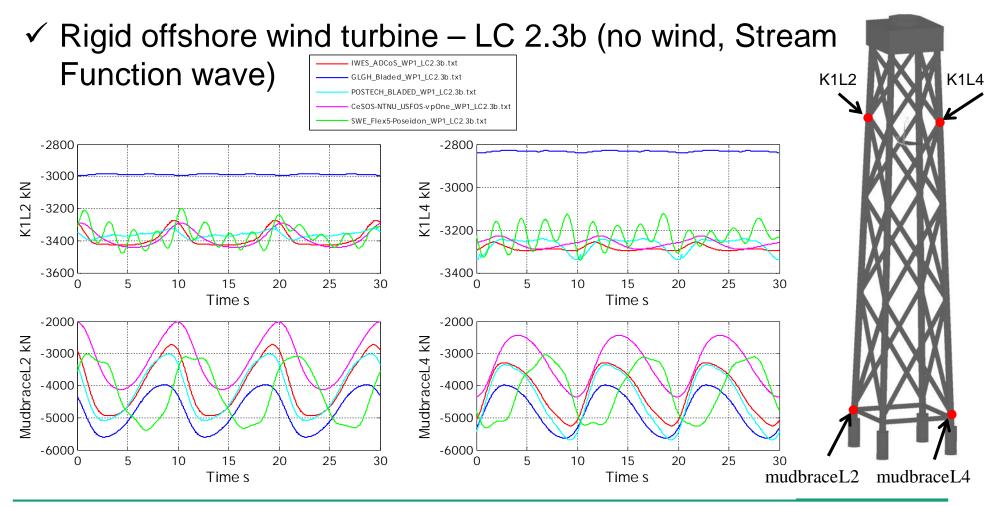
- GLGH / Bladed MultiBody
- ECN-WMC / Phatas WMC-fem2
- LUH / Abaqus
- SAMTECH / S4WT



Simulation and assessment of wind turbines

Exemplary results:

✓ Eigenanalysis – LC 1.0b (no gravity and no struct. damping)



20

Simulation and assessment of wind turbines

Exemplary results:

Simulation and assessment of wind turbines

Phase I: Turbine on Jacket Substructure: Wrap-up

- High international interest in Phase I (15 participants delivered data for the preliminary comparison study)
- Detailed model description based on NREL baseline turbine and Upwind jacket available
- Setup of groups of test cases in the OC4 committee done
- First results obtained so far show reasonable agreement
- Further revisions of the results are on the agenda

Phase II: Turbine on floating semi-submersible

OC4 participants will choose between Principle Power Inc.'s (PPI) WindFloat & DeepCwind generic semi-submersibles:

- PPI WindFloat is a patented commercial system with first fullscale installation scheduled for mid 2011
- DeepCwind is a generic publically available design to be wave-tank tested at 1/50th scale in 2011
- Decision making still ongoing

WindFloat (Image: D. Roddier, PPI)

Thank you for your attention

